ﻻ يوجد ملخص باللغة العربية
Why are the nuclei of some galaxies more active than others? If most galaxies harbor a central massive black hole, the main difference is probably in how well it is fueled by its surroundings. We investigate the hypothesis that such a difference can be seen in the detailed circumnuclear morphologies of galaxies using several quantitatively defined features, including bars, isophotal twists, boxy and disky isophotes, and strong non-axisymmetric features in unsharp masked images. These diagnostics are applied to 250 high-resolution images of galaxy centers obtained in the near-infrared with NICMOS on HST. To guard against the influence of possible biases and selection effects, we have carefully matched samples of Seyfert 1, Seyfert 2, LINER, starburst and normal galaxies in their basic properties, taking particular care to ensure that each was observed with a similar average scale (10-15 parsecs per pixel). Several morphological differences among our five different spectroscopic classifications emerge from the analysis. The HII/starburst galaxies show the strongest deviations from smooth elliptical isophotes, while the normal galaxies and LINERS have the least disturbed morphology. The Seyfert 2 galaxies have significantly more twisted isophotes than any other category, and the early-type Seyfert 2s are significantly more disturbed than the early-type Seyfert 1s. The morphological differences between Seyfert 1s and 2s suggest that more is at work than simply the viewing angle of the central engine. They may correspond to different evolutionary stages.
HST is used to study the power sources and the interaction-induced tidal disturbances within the most luminous galaxies in the local universe -- the Ultra-Luminous IR Galaxies (ULIRGs) -- through the use of I-band images with WFPC2 and H-band images
We present results of Hubble Space Telescope NICMOS H-band imaging of 73 of most luminous (i.e., log[L_IR/L_0]>11.4) Infrared Galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey (GOALS). This dataset combines multi-wavelength imaging and
We present results from our analysis of F160W NICMOS Parallel images. These data cover $sim$~9~sq. arcminutes and reach 3$sigma$ depths of H$=$ 24.3 $-$ 25.5 in a $0.6$ diameter aperture with integration times of 2,000 to 13,000 seconds. We derive th
We discuss the critical importance of black hole mass indicators based on scaling relations in active galaxies. We highlight outstanding uncertainties in these methods and potential paths to substantial progress in the next decade.
We have obtained near-infrared (1.6 micron) images of 11 powerful 3CR radio galaxies at redshifts 0.8 < z < 1.8 using NICMOS on board HST. The high angular resolution permits a detailed study of galaxy morphology in these systems at rest-frame optica