ترغب بنشر مسار تعليمي؟ اضغط هنا

Active Galaxies and the Study of Black Hole Demographics

455   0   0.0 ( 0 )
 نشر من قبل Jenny Greene
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jenny E. Greene




اسأل ChatGPT حول البحث

We discuss the critical importance of black hole mass indicators based on scaling relations in active galaxies. We highlight outstanding uncertainties in these methods and potential paths to substantial progress in the next decade.



قيم البحث

اقرأ أيضاً

148 - Laura Ferrarese 2002
The purpose of this contribution is to review the current status of black hole demographics in light of recent advances in the study of high redshift QSOs (section 2), local AGNs (section 3) and local quiescent galaxies (section 4). I will then outli ne the prospects for future progress (section 5), and discuss what I believe will be the challenges for the years to come [ABRIDGED].
We present high-quality Keck/LRIS longslit spectroscopy of a pilot sample of 25 local active galaxies selected from the SDSS (0.02<z<0.1; MBH>10^7 M_sun) to study the relations between black hole mass (MBH) and host-galaxy properties. We determine st ellar kinematics of the host galaxy, deriving stellar-velocity dispersion profiles and rotation curves from three spectral regions (including CaH&K, MgIb triplet, and CaII triplet). In addition, we perform surface photometry on SDSS images, using a newly developed code for joint multi-band analysis. BH masses are estimated from the width of the Hbeta emission line and the host-galaxy free 5100A AGN luminosity. Combining results from spectroscopy and imaging allows us to study four MBH scaling relations: MBH-sigma, MBH-L(sph), MBH-M(sph,*), MBH-M(sph,dyn). We find the following results. First, stellar-velocity dispersions determined from aperture spectra (e.g. SDSS fiber spectra or unresolved data from distant galaxies) can be biased, depending on aperture size, AGN contamination, and host-galaxy morphology. However, such a bias cannot explain the offset seen in the MBH-sigma relation at higher redshifts. Second, while the CaT region is the cleanest to determine stellar-velocity dispersions, both the MgIb region, corrected for FeII emission, and the CaHK region, although often swamped by the AGN powerlaw continuum and emission lines, can give results accurate to within a few percent. Third, the MBH scaling relations of our pilot sample agree in slope and scatter with those of other local active and inactive galaxies. In the next papers of the series we will quantify the scaling relations, exploiting the full sample of ~100 objects.
We consider black hole - galaxy coevolution using simple analytic arguments. We focus on the fact that several supermassive black holes are known with masses significantly larger than suggested by the $M - {sigma}$ relation, sometimes also with rathe r small stellar masses. We show that these are likely to have descended from extremely compact `blue nugget galaxies born at high redshift, whose very high velocity dispersions allowed the black holes to reach unusually large masses. Subsequent interactions reduce the velocity dispersion, so the black holes lie above the usual $M - {sigma}$ relation and expel a large fraction of the bulge gas (as in WISE J104222.11+164115.3) that would otherwise make stars, before ending at low redshift as very massive holes in galaxies with relatively low stellar masses, such as NGC 4889 and NGC 1600. We further suggest the possible existence of two new types of galaxy: low-mass dwarfs whose central black holes lie below the $M - {sigma}$ relation at low redshift, and galaxies consisting of very massive ($gtrsim 10^{11}$M$_{odot}$) black holes with extremely small stellar masses. This second group would be very difficult to detect electromagnetically, but potentially offer targets of considerable interest for LISA.
127 - W.N. Brandt 2015
We review results from cosmic X-ray surveys of active galactic nuclei (AGNs) over the past ~ 15 yr that have dramatically improved our understanding of growing supermassive black holes in the distant universe. First, we discuss the utility of such su rveys for AGN investigations and the capabilities of the missions making these surveys, emphasizing Chandra, XMM-Newton, and NuSTAR. Second, we briefly describe the main cosmic X-ray surveys, the essential roles of complementary multiwavelength data, and how AGNs are selected from these surveys. We then review key results from these surveys on the AGN population and its evolution (demographics), the physical processes operating in AGNs (physics), and the interactions between AGNs and their environments (ecology). We conclude by describing some significant unresolved questions and prospects for advancing the field.
The mass estimator used to calculate black hole (BH) masses in broad-line active galactic nuclei (AGNs) relies on a virial coefficient (the $f$ factor) that is determined by comparing reverberation-mapped (RM) AGNs with measured bulge stellar velocit y dispersions against the $M_{rm BH}-sigma_*$ relation of inactive galaxies. It has recently been recognized that only classical bulges and ellipticals obey a tight $M_{rm BH}-sigma_*$ relation; pseudobulges have a different zero point and much larger scatter. Motivated by these developments, we reevaluate the $f$ factor for RM AGNs with available $sigma_*$ measurements, updated H$beta$ RM lags, and new bulge classifications based on detailed decomposition of high-resolution ground-based and space-based images. Separate calibrations are provided for the two bulge types, whose virial coefficients differ by a factor of $sim 2$: $f=6.3pm1.5$ for classical bulges and ellipticals and $f = 3.2pm0.7$ for pseudobulges. The structure and kinematics of the broad-line region, at least as crudely encoded in the $f$ factor, seems to related to the large-scale properties or formation history of the bulge. Lastly, we investigate the bulge stellar masses of the RM AGNs, show evidence for recent star formation in the AGN hosts that correlates with Eddington ratio, and discuss the potential utility of the $M_{rm BH}-M_{rm bulge}$ relation as a more promising alternative to the conventionally used $M_{rm BH}-sigma_*$ relation for future refinement of the virial mass estimator for AGNs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا