ﻻ يوجد ملخص باللغة العربية
K 4-47 is an unusual planetary nebula composed of a compact high-ionization core and a pair of low-ionization knots. Long-slit medium-resolution spectra of the knots and core are analyzed in this paper. Assuming photoionization from the central star, we have derived physical parameters for all the nebular components, and the (icf) chemical abundances of the core, which appear similar to Type-I PNe for He and N/O but significantly deficient in oxygen. The nebula has been further modelled using both photoionization (CLOUDY) and shock (MAPPINGS) codes. From the photoionization modelling of the core, we find that both the strong auroral [O III] 4363A and [N II] 5755A emission lines observed and the optical size of the core cannot be accounted for if a homogeneus density is adopted. We suggest that a strong density stratification, matching the high-density core detected at radio wavelengths and the much lower density of the optical core, might solve the problem. From the bow-shock modelling of the knots, on the other hand, we find that knots chemistry is also represented by Type-I PN abundances, and that they would move with velocities of 250 - 300 km/s.
Direct imaging observations have revealed spiral structures in protoplanetary disks. Previous studies have suggested that planet-induced spiral arms cannot explain some of these spiral patterns, due to the large pitch angle and high contrast of the s
We have obtained narrow-band images and high-resolution spectra of the planetary nebulae NGC 6337, He 2-186, and K 4-47, with the aim of investigating the relation between their main morphological components and several low-ionization features presen
We report on OH maser emission toward G336.644-0.695 (IRAS 16333-4807), which is a H2O maser-emitting Planetary Nebula (PN). We have detected 1612, 1667 and 1720 MHz OH masers at two epochs using the Australia Telescope Compact Array (ATCA), hereby c
We present a summary of current research on planetary nebulae and their central stars, and related subjects such as atomic processes in ionized nebulae, AGB and post-AGB evolution. Future advances are discussed that will be essential to substantial improvements in our knowledge in the field.
The emission nebula around the subdwarf B (sdB) star PHL 932 is currently classified as a planetary nebula (PN) in the literature. Based on a large body of multi-wavelength data, both new and previously published, we show here that this low-excitatio