ﻻ يوجد ملخص باللغة العربية
Direct imaging observations have revealed spiral structures in protoplanetary disks. Previous studies have suggested that planet-induced spiral arms cannot explain some of these spiral patterns, due to the large pitch angle and high contrast of the spiral arms in observations. We have carried out three dimensional (3-D) hydrodynamical simulations to study spiral wakes/shocks excited by young planets. We find that, in contrast with linear theory, the pitch angle of spiral arms does depend on the planet mass, which can be explained by the non-linear density wave theory. A secondary (or even a tertiary) spiral arm, especially for inner arms, is also excited by a massive planet. With a more massive planet in the disk, the excited spiral arms have larger pitch angle and the separation between the primary and secondary arms in the azimuthal direction is also larger. We also find that although the arms in the outer disk do not exhibit much vertical motion, the inner arms have significant vertical motion, which boosts the density perturbation at the disk atmosphere. Combining hydrodynamical models with Monte-Carlo radiative transfer calculations, we find that the inner spiral arms are considerably more prominent in synthetic near-IR images using full 3-D hydrodynamical models than images based on 2-D models assuming vertical hydrostatic equilibrium, indicating the need to model observations with full 3-D hydrodynamics. Overall, companion-induced spiral arms not only pinpoint the companions position but also provide three independent ways (pitch angle, separation between two arms, and contrast of arms) to constrain the companions mass.
For the past six years we have carried out a search for massive planets around main sequence and evolved stars in the open cluster (OC) M67, using radial velocity (RV) measurements obtained with HARPS at ESO (La Silla), SOPHIE at OHP and HRS at HET.
We analyse FORS2/VLT $I$-band imaging data to monitor the motions of both components in the nearest known binary brown dwarf WISE J104915.57-531906.1AB (LUH16) over one year. The astrometry is dominated by parallax and proper motion, but with a preci
Bayesian atmospheric retrieval tools can place constraints on the properties of brown dwarfs and hot Jupiters atmospheres. To fully exploit these methods, high signal-to-noise spectral libraries with well-understood uncertainties are essential. We pr
We present new analysis of multi-epoch, H-band, scattered light images of the AB Aur system. We used a Monte Carlo, radiative transfer code to simultaneously model the systems SED and H-band polarized intensity imagery. We find that a disk-dominated
Theoretical studies suggest that a giant planet around the young star MWC 758 could be responsible for driving the spiral features in its circumstellar disk. Here, we present a deep imaging campaign with the Large Binocular Telescope with the primary