ﻻ يوجد ملخص باللغة العربية
We present an INTEGRAL data analysis of the X-ray transient object{SAX J2103.5+4545} during two outbursts detected in December 2002. The INTEGRAL coordinates and error circle agree with the position of the recently proposed optical counterpart. A power-law plus cut-off model provided a good fit to the 4-150 keV spectrum yielding a photon index of 1.0+-0.1, a cut-off energy E_cut=7.6+-2.0 keV and a folding energy E_fold=30.9+-2.5 keV. The X-ray luminosity in the 4-150 keV energy range was found to be 6.0x10^36 erg/s, assuming a distance of 6.5 kpc. This luminosity, together with the derived photon index, indicate that the source is in a bright state. A 354.9$+-0.5 second pulse period is measured. This value is significantly smaller than previous measurements, indicating a long-term spin-up episode.
We performed a detailed study of the 2007 outburst of the 352s pulsar SAXJ2103.5+4545, a Be/X-ray transient observed by INTEGRAL, to study its spectral and temporal properties during the evolution of the outburst. SAXJ2103.5+4545 was observed with IB
We investigated the optical, X-ray, and gamma-ray variability of the pulsar SAX J2103.5+4545. Our timing and spectral analyses of the X-ray and gamma-ray emissions from the source using RXTE and INTEGRAL data show that the shape of its spectrum in th
We present an X-ray timing and spectral analysis of the Be/X-ray binary SAX J2103.5+4545 at a time when the Be stars circumstellar disk had disappeared and thus the main reservoir of material available for accretion had extinguished. In this very low
Aims. We present the first long-term pulse profile study of the X-ray pulsar SAX J2103.5+4545. Our main goal is to study the pulse shape correlation either with luminosity, time or energy. Methods. This Be/X-ray binary system was observed from 1999
XMM-Newton observed SAX J2103.5+4545 on January 6, 2003, while RXTE was monitoring the source. Using RXTE-PCA dataset between December 3, 2002 and January 29, 2003, the spin period and average spin-up rate during the XMM-Newton observations were foun