ﻻ يوجد ملخص باللغة العربية
We performed a detailed study of the 2007 outburst of the 352s pulsar SAXJ2103.5+4545, a Be/X-ray transient observed by INTEGRAL, to study its spectral and temporal properties during the evolution of the outburst. SAXJ2103.5+4545 was observed with IBIS/ISGRI from 25 to 27 April 2007 and from 6 to 8 May 2007. The 20-100keV spectrum is well described by a bremsstrahlung model with a temperature kT = 24keV. The pulse profiles are variable with time and energy. A pulse period derivative of pdot = -3.4E-7 s/s has been observed during the outburst. Instead, a spin-down of pdot = 5.5E-9 s/s is observed between the 2007 outburst reported here and the previous one occurred in December 2004. This is the largest spin-down measured for SAXJ2103.5+4545 since its discovery. We estimate a neutron star magnetic field in the range (1.6-3)E13 G using the Ghosh & Lamb torque model.
We present an INTEGRAL data analysis of the X-ray transient object{SAX J2103.5+4545} during two outbursts detected in December 2002. The INTEGRAL coordinates and error circle agree with the position of the recently proposed optical counterpart. A pow
We investigated the optical, X-ray, and gamma-ray variability of the pulsar SAX J2103.5+4545. Our timing and spectral analyses of the X-ray and gamma-ray emissions from the source using RXTE and INTEGRAL data show that the shape of its spectrum in th
Aims. We present the first long-term pulse profile study of the X-ray pulsar SAX J2103.5+4545. Our main goal is to study the pulse shape correlation either with luminosity, time or energy. Methods. This Be/X-ray binary system was observed from 1999
We present an X-ray spectral and timing analysis of two $NuSTAR$ observations of the transient Be X-ray binary SAX J2103.5+4545 during its April 2016 outburst, which was characterized by the highest flux since $NuSTAR$s launch. These observations pro
We present an X-ray timing and spectral analysis of the Be/X-ray binary SAX J2103.5+4545 at a time when the Be stars circumstellar disk had disappeared and thus the main reservoir of material available for accretion had extinguished. In this very low