ﻻ يوجد ملخص باللغة العربية
Asymmetric variability in ultraviolet images of the Homunculus obtained with the Advanced Camera for Surveys/High Resolution Camera on the Hubble Space Telescope suggests that Eta Carinae is indeed a binary system. Images obtained before, during, and after the recent ``spectroscopic event in 2003.5 show alternating patterns of bright spots and shadows on opposite sides of the star before and after the event, providing a strong geometric argument for an azimuthally-evolving, asymmetric UV radiation field as one might predict in some binary models. The simplest interpretation of these UV images, where excess UV escapes from the secondary star in the direction away from the primary, places the major axis of the eccentric orbit roughly perpendicular to our line of sight, sharing the same equatorial plane as the Homunculus, and with apastron for the hot secondary star oriented toward the southwest of the primary. However, other orbital orientations may be allowed with more complicated geometries. Selective UV illumination of the wind and ejecta may be partly responsible for line profile variations seen in spectra. The brightness asymmetries cannot be explained plausibly with delays due to light travel time alone, so a single-star model would require a seriously asymmetric shell ejection.
We present preliminary results of our analysis on the long-term variations observed in the optical spectrum of the LBV star Eta Carinae. Based on the hydrogen line profiles, we conclude that the physical parameters of the primary star did not change in the last 15 years.
We examine a variety of observations that shed light on the orientation of the semi-major axis of the Eta Carinae massive binary system. Under several assumptions we study the following observations: The Doppler shifts of some He I P-Cygni lines that
Previous submillimetre (submm) observations detected 0.7 solar masses of cool dust emission around the Luminous Blue Variable (LBV) star Eta Carinae. These observations were hindered by the low declination of Eta Carinae and contamination from free-f
The interacting binary Eta Carinae remains one of the most enigmatic massive stars in our Galaxy despite over four centuries of observations. In this work, its light curve from the ultraviolet to the near-infrared is analysed using spatially resolved
During the years 1838-1858, the very massive star {eta} Carinae became the prototype supernova impostor: it released nearly as much light as a supernova explosion and shed an impressive amount of mass, but survived as a star.1 Based on a light-echo s