ﻻ يوجد ملخص باللغة العربية
We examine a variety of observations that shed light on the orientation of the semi-major axis of the Eta Carinae massive binary system. Under several assumptions we study the following observations: The Doppler shifts of some He I P-Cygni lines that is attributed to the secondarys wind, of one Fe II line that is attributed to the primarys wind, and of the Paschen emission lines which are attributed to the shocked primarys wind, are computed in our model and compared with observations. We compute the hydrogen column density toward the binary system in our model, and find a good agreement with that deduced from X-ray observations. We calculate the ionization of surrounding gas blobs by the radiation of the hotter secondary star, and compare with observations of a highly excited [Ar III] narrow line. We find that all of these support an orientation where for most of the time the secondary - the hotter less massive star - is behind the primary star. The secondary comes closer to the observer only for a short time near periastron passage, in its highly eccentric (e~0.9) orbit. Further supporting arguments are also listed, followed by discussion of some open and complicated issues.
Asymmetric variability in ultraviolet images of the Homunculus obtained with the Advanced Camera for Surveys/High Resolution Camera on the Hubble Space Telescope suggests that Eta Carinae is indeed a binary system. Images obtained before, during, and
Contrary to recent claims, we argue that the orientation of the massive binary system Eta Carinae is such that the secondary star is closer to us at periastron passage, and it is on the far side during most of the time of the eccentric orbit. The bin
During the years 1838-1858, the very massive star {eta} Carinae became the prototype supernova impostor: it released nearly as much light as a supernova explosion and shed an impressive amount of mass, but survived as a star.1 Based on a light-echo s
Extensive spectral observations of eta Carinae over the last cycle, and particularly around the 2003.5 low excitation event, have been obtained. The variability of both narrow and broad lines, when combined with data taken from two earlier cycles, re
$eta$ Car is a massive, eccentric binary with a rich observational history. We obtained the first high-cadence, high-precision light curves with the BRITE-Constellation nanosatellites over 6 months in 2016 and 6 months in 2017. The light curve is con