ترغب بنشر مسار تعليمي؟ اضغط هنا

The INTEGRAL/SPI response and the Crab observations

50   0   0.0 ( 0 )
 نشر من قبل M. Patrick Sizun
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Crab region was observed several times by INTEGRAL for calibration purposes. This paper aims at underlining the systematic interactions between (i) observations of this reference source, (ii) in-flight calibration of the instrumental response and (iii) the development and validation of the analysis tools of the SPI spectrometer. It first describes the way the response is produced and how studies of the Crab spectrum lead to improvements and corrections in the initial response. Then, we present the tools which were developed to extract spectra from the SPI observation data and finally a Crab spectrum obtained with one of these methods, to show the agreement with previous experiments. We conclude with the work still ahead to understand residual uncertainties in the response.



قيم البحث

اقرأ أيضاً

131 - T.Mineo , C.Ferrigno , L.Foschini 2006
The paper presents the timing and spectral analysis of several observations of the Crab pulsar performed with INTEGRAL in the energy range 3-500 keV. All these observations, when summed together provide a high statistics data set which can be used fo r accurate phase resolved spectroscopy. A detailed study of the pulsed emission at different phase intervals is performed. The spectral distribution changes with phase showing a characteristic reverse S shape of the photon index. Moreover the spectrum softens with energy, in each phase interval, and this behavior is adequately modeled over the whole energy range 3-500 keV with a single curved law with a slope variable with Log(E), confirming the BeppoSAX results on the curvature of the pulsed emission. The bending parameter of the log-parabolic model is compatible with a single value of 0.14+/-0.02 over all phase intervals. Results are discussed within the three-dimensional outer gap model.
During the first observing run of LIGO, two gravitational wave events and one lower-significance trigger (LVT151012) were reported by the LIGO/Virgo collaboration. At the time of LVT151012, the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRA L) was pointing at a region of the sky coincident with the high localization probability area of the event and thus permitted us to search for its electromagnetic counterpart (both prompt and afterglow emission). The imaging instruments on-board INTEGRAL (IBIS/ISGRI, IBIS/PICsIT, SPI, and the two JEM-X modules) have been exploited to attempt the detection of any electromagnetic emission associated with LVT151012 over 3 decades in energy (from 3 keV to 8 MeV). The omni-directional instruments on-board the satellite, i.e. the SPI-ACS and IBIS monitored the entire LVT151012 localization region at energies above 75 keV. We did not find any significant transient source that was spatially and/or temporally coincident with LVT151012, obtaining tight upper limits on the associated hard X-ray and $gamma$-ray radiation. For typical spectral models, the upper limits on the fluence of the emission from any 1 s long-lasting counterpart of LVT151012 ranges from $F_{gamma}=$3.5$times$10$^{-8}$ erg cm$^{-2}$ (20 - 200 keV) to $F_{gamma}$=7.1$times$10$^{-7}$ erg cm$^{-2}$ (75 - 2000 keV), constraining the ratio of the isotropic equivalent energy released in the electromagnetic emission to the total energy of the gravitational waves: $E_{75-2000~keV}/E_{GW}<$4.4$times$10$^{-5}$. Finally, we provide an exhaustive summary of the capabilities of all instruments on-board INTEGRAL to hunt for $gamma$-ray counterparts of gravitational wave events, exploiting both serendipitous and pointed follow-up observations. This will serve as a reference for all future searches.
The Anti Coincidence Shield (ACS) of the INTEGRAL SPI instrument provides an excellent sensitivity for the detection of Gamma Ray Bursts (GRBs) above ~ 75keV, but no directional and energy information is available. We studied the ACS response by usin g GRBs with known localizations and good spectral information derived by other satellites. We derived a count rate to flux conversion factor for different energy ranges and studied its dependence on the GRB direction and spectral hardness. For a typical GRB spectrum, we found that 1 ACS count corresponds on average to ~ 1E-10 erg/cm^2 in the 75keV-1MeV range, for directions orthogonal to the satellite pointing axis. This is broadly consistent with the ACS effective area derived from the Monte Carlo simulations, but there is some indication that the latter slightly overestimates the ACS sensitivity, especially for directions close to the instrument axis.
78 - S. Mereghetti 2005
A giant flare from the Soft Gamma-ray Repeater SGR 1806-20 has been detected by several satellites on 2004 December 27. This tremendous outburst, the first one observed from this source, was a hundred times more powerful than the two previous giant f lares from SGR 0525-66 and SGR 1900+14. We report the results obtained for this event with the Anticoincidence Shield of the SPI spectrometer on board the INTEGRAL satellite, which provides a high-statistics light curve at E>~80 keV. The flare started with a very strong pulse, which saturated the detector for ~0.7 s, and whose backscattered radiation from the Moon was detected 2.8 s later. This was followed by a ~400 s long tail modulated at the neutron star rotation period of 7.56 s. The tail fluence corresponds to an energy in photons above 3 keV of 1.6x10^44 (d/15 kpc)^2 erg. This is of the same order of the energy emitted in the pulsating tails of the two giant flares seen from other soft repeaters, despite the hundredfold larger overall emitted energy of the SGR 1806-20 giant flare. Long lasting (~1 hour) hard X-ray emission, decaying in time as t^-0.85, and likely associated to the SGR 1806-20 giant flare afterglow has also been detected.
109 - A. Rau 2005
We present the sample of gamma-ray bursts detected with the anti-coincidence shield ACS of the spectrometer SPI on-board INTEGRAL for the first 26.5 months of mission operation (up to Jan 2005). SPI-ACS works as a nearly omnidirectional gamma-ray bur st detector above ~80 keV but lacks spatial and spectral information. In this catalogue, the properties derived from the 50 ms light curves (e.g., T90, Cmax, Cint, variability, V/Vmax) are given for each candidate burst in the sample. A strong excess of very short events with durations <0.25 s is found. This population is shown to be significantly different from the short- and long-duration burst sample by means of the intensity distribution and V/Vmax test and is certainly connected with cosmic ray hits in the detector. A rate of 0.3 true gamma-ray bursts per day is observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا