ترغب بنشر مسار تعليمي؟ اضغط هنا

The 1st INTEGRAL SPI-ACS Gamma-Ray Burst Catalogue

110   0   0.0 ( 0 )
 نشر من قبل Arne Rau
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Rau




اسأل ChatGPT حول البحث

We present the sample of gamma-ray bursts detected with the anti-coincidence shield ACS of the spectrometer SPI on-board INTEGRAL for the first 26.5 months of mission operation (up to Jan 2005). SPI-ACS works as a nearly omnidirectional gamma-ray burst detector above ~80 keV but lacks spatial and spectral information. In this catalogue, the properties derived from the 50 ms light curves (e.g., T90, Cmax, Cint, variability, V/Vmax) are given for each candidate burst in the sample. A strong excess of very short events with durations <0.25 s is found. This population is shown to be significantly different from the short- and long-duration burst sample by means of the intensity distribution and V/Vmax test and is certainly connected with cosmic ray hits in the detector. A rate of 0.3 true gamma-ray bursts per day is observed.



قيم البحث

اقرأ أيضاً

122 - Z. Bosnjak , D. Gotz , L. Bouchet 2013
We present the updated INTEGRAL catalogue of gamma-ray bursts (GRBs) observed between December 2002 and February 2012. The catalogue contains the spectral parameters for 59 GRBs localized by the INTEGRAL Burst Alert System (IBAS). We used the data fr om the two main instruments on board the INTEGRAL satellite: the spectrometer SPI (SPectrometer on INTEGRAL) nominally covering the energy range 18 keV - 8 MeV, and the imager IBIS (the Imager on Board the INTEGRAL Satellite) operating in the range from 15 keV to 10 MeV. For the spectral analysis we applied a new data extraction technique, developed in order to explore the energy regions of highest sensitivity for both instruments, SPI and IBIS. It allowed us to perform analysis of the GRB spectra over a broad energy range and to determine the bursts spectral peak energies. The spectral analysis was performed on the whole sample of GRBs triggered by IBAS, including all the events observed in period December 2002 - February 2012. The catalogue contains the trigger times, burst coordinates, positional errors, durations and peak fluxes for 28 unpublished GRBs observed between September 2008 and February 2012. The light curves in 20 - 200 keV energy band of these events were derived using IBIS data. We compare the prompt emission properties of the INTEGRAL GRB sample with the BATSE and Fermi samples.
We analyzed data obtained by the SPI telescope onboard the INTEGRAL observatory to search for short transient events with a duration from 1 ms to a few tens of seconds. An algorithm for identifying gamma-ray events against the background of a large n umber of charged particle interactions with the detector has been developed. The classification of events was made. Apart from the events associated with cosmic gamma-ray bursts (GRBs) confirmed by other space experiments and the activity of known soft gamma repeaters (for example, SGR 1806-20), previously unreported GRBs have been found. GRB candidates and short gamma-ray events probably associated with the activity of known SGRs and AXPs have been selected. The spectral evolution of 28 bright GRBs from the catalog has been studied extensively. A new method for investigating the spectral evolution is proposed. The energy dependence of the spectral lag for bursts with a simple structure of their light curves and for individual pulses of multipulse events is shown to be described by a logarithmic function, lag ~ A*log(E). It has been established that the parameter A depends on the pulse duration, with the dependence being universal for all of the investigated GRBs. No negative spectral lags have been detected for bursts with a simple structure of their light curves.
We present a catalogue with the properties of all the bursts detected and localized by the IBIS instrument onboard the INTEGRAL satellite from November 2002 to September 2008. The sample is composed of 56 bursts, corresponding to a rate of ~ 0.8 GRB per month. Thanks to the performances of the INTEGRAL Burst Alert System, 50% of the IBIS GRBs have detected afterglows, while 5% have redshift measurements. A spectral analysis of the 43 bursts in the INTEGRAL public archive has been carried out using the most recent software and calibration, deriving an updated, homogeneous and accurate catalogue with the spectral features of the sample. When possible also a time-resolved spectral analysis has been carried out. The GRBs in the sample have 20-200 keV fluences in the range 5 x 1E-8 --2.5 x 1E-4 erg cm-2, and peak fluxes in the range 0.11 - 56 ph cm-2 s-1. While most of the spectra are well fitted by a power law with photon index ~ 1.6, we found that 9 bursts are better described by a cut-off power law, resulting in Ep values in the range 35--190 keV. Altough these results are comparable with those obtained with BAT onboard Swift, there is a marginal evidence that ISGRI detects dimmer bursts than Swift/BAT. Using the revised spectral parameters and an updated sky exposure map that takes into account also the effects of the GRB trigger efficiency, we strengthen the evidence for a spatial correlation with the super galactic plane of the faint bursts with long spectral lag (Foley et al.,2008).
The Anti Coincidence Shield (ACS) of the INTEGRAL SPI instrument provides an excellent sensitivity for the detection of Gamma Ray Bursts (GRBs) above ~ 75keV, but no directional and energy information is available. We studied the ACS response by usin g GRBs with known localizations and good spectral information derived by other satellites. We derived a count rate to flux conversion factor for different energy ranges and studied its dependence on the GRB direction and spectral hardness. For a typical GRB spectrum, we found that 1 ACS count corresponds on average to ~ 1E-10 erg/cm^2 in the 75keV-1MeV range, for directions orthogonal to the satellite pointing axis. This is broadly consistent with the ACS effective area derived from the Monte Carlo simulations, but there is some indication that the latter slightly overestimates the ACS sensitivity, especially for directions close to the instrument axis.
154 - S. McGlynn 2008
INTEGRAL has observed 47 long-duration GRBs (T_90 > 2s) and 1 short-duration GRB (T_90 < 2s) in five years of observation since October 2002. This work presents the properties of the prompt emission of GRB 070707, which is the first short hard GRB ob served by INTEGRAL. The spectral and temporal properties of GRB 070707 were determined using the two sensitive coded-mask gamma-ray instruments on board INTEGRAL, IBIS and SPI. The T_90 duration was 0.8s, and the spectrum of the prompt emission was obtained by joint deconvolution of IBIS and SPI data to yield a best fit power-law with photon index alpha = -1.19 +0.14 -0.13, which is consistent with the characteristics of short-hard gamma-ray bursts. The peak flux over 1 second was 1.79 photons/cm^2/s and the fluence over the same interval was 2.07 x 10^-7 erg/cm^2 in the energy range 20-200keV. The spectral lag measured between 25-50keV and 100-300keV is 20 +/- 5ms, consistent with the small or negligible lags measured for short bursts. The spectral and temporal properties of GRB 070707 are comparable to those of the short hard bursts detected by other gamma-ray satellites, including BATSE and Swift. We estimate a lower limit on the Lorentz factor Gamma >~ 25 for GRB 070707, assuming the typical redshift for short GRBs of z=0.35. This limit is consistent with previous estimates for short GRBs and is smaller than the lower limits of Gamma >~ 100 calculated for long GRBs. If GRB 070707 is a member of the recently postulated class of short GRBs at z ~ 1, the lower limit on Gamma increases to Gamma >~ 35.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا