ﻻ يوجد ملخص باللغة العربية
We calculate the atmospheric structure of an accretion disk around a Kerr black hole and obtain its X-ray spectrum, which exhibits prominent atomic transitions under certain circumstances. The gravitational and Doppler (red)shifts of the C V, C VI, O VII, O VIII, and Fe I-XXVI emission lines are observable in active galaxies. We quantify the line emissivities as a function of radius, to identify the effects of atmospheric structure, and to determine the usefulness of these lines for probing the disk energetics. The line emissivities do not always scale linearly with the incident radiative energy, as in the case of Fe XXV and Fe XXVI. Our model incorporates photoionization and thermal balance for the plasma, the hydrostatic approximation perpendicular to the plane of the disk, and general relativistic tidal forces. We include radiative recombination rates, fluorescence yields, Compton scattering, and photoelectric opacities for the most abundant elements.
We model the X-rays reprocessed by an accretion disk in a fiducial low-mass X-ray binary system with a neutron star primary. An atmosphere, or the intermediate region between the optically thick disk and a Compton-temperature corona, is photoionized
We use a multi-dimensional Monte Carlo code to compute X-ray spectra for a variety of active galactic nucleus (AGN) disk-wind outflow geometries. We focus on the formation of blue-shifted absorption features in the Fe K band and show that line featur
Some thermonuclear (type I) X-ray bursts at the neutron star surfaces in low-mass X-ray binaries take place during hard persistent states of the systems. Spectral evolution of these bursts is well described by the atmosphere model of a passively cool
The mechanism of thermal driving for launching mass outflows is interconnected with classical thermal instability (TI). In a recent paper, we demonstrated that as a result of this interconnectedness, radial wind solutions of X-ray heated flows are pr
We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow and the g