ﻻ يوجد ملخص باللغة العربية
Some thermonuclear (type I) X-ray bursts at the neutron star surfaces in low-mass X-ray binaries take place during hard persistent states of the systems. Spectral evolution of these bursts is well described by the atmosphere model of a passively cooling neutron star when the burst luminosity is high enough. The observed spectral evolution deviates from the model predictions when the burst luminosity drops below a critical value of 20-70% of the maximum luminosity. We suggest that these deviations are induced by the additional heating of the accreted particles. We present a method for computation of the neutron star atmosphere models heated by accreted particles assuming that their energy is released via Coulomb interactions with electrons. We compute the temperature structures and the emergent spectra of the atmospheres of various chemical compositions and investigate the dependence of the results on the other model parameters. We show that the heated atmosphere develops the hot (20--100 keV) corona-like surface layer cooled by Compton scattering, and the deeper, almost isothermal optically thick region with a temperature of a few keV. The emergent spectra deviate strongly from those of undisturbed neutron star atmospheres, with the main differences being the presence of a high-energy tail and a strong excess in the low-energy part of the spectrum. They also lack the iron absorption edge, which is visible in the spectra of undisturbed low-luminosity atmospheres with solar chemical composition. Using the computed spectra, we obtained the dependences of the dilution and color-correction factors as functions of relative luminosities for pure helium and solar abundance atmospheres. We show that the helium model atmosphere heated by accretion corresponding to 5% of the Eddington luminosity describes well the late stages of the X-ray bursts in 4U 1820-30.
The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius
Thermal dominated X-ray spectra of neutron stars in quiescent transient X-ray binaries and neutron stars that undergo thermonuclear bursts are sensitive to mass and radius. The mass-radius relation of neutron stars depends on the equation of state th
We infer the collapse times of long-lived neutron stars into black holes using the X-ray afterglows of 18 short gamma-ray bursts. We then apply hierarchical inference to infer properties of the neutron star equation of state and dominant spin-down me
The equation of state (EoS) of the neutron star (NS) matter remains an enigma. In this work we perform the Bayesian parameter inference with the gravitational wave data (GW170817) and mass-radius observations of some NSs (PSR J0030+0451, PSR J0437-47