ﻻ يوجد ملخص باللغة العربية
The Rees-Sciama effect produced in mergers of galaxy clusters is discussed, and an analytical approximation to compute this effect from numerical simulations is given. Using this approximation and a novel toy model describing the physics of the merger, we characterize the spatial properties and symmetries of the Rees-Sciama signal. Based on these properties, we propose a method to extract the physical parameters of the merger, which relies on the computation of the quadrupole moment of the observed brightness distribution on the sky. The relationships between the quadrupole coefficients and the physical parameters of the merger (physical separation, projection angle on the sky and angular momentum) are discussed. Finally, we propose a method to co-add coherently the RS signals from a sample of cluster mergers, in order to achieve an statistical detection of the effect for those cases where individual signals are masked by the kinetic SZ effect, the primordial CMB components, and by observational noise.
The study of cluster populations as tracer of galaxy evolution is now quite possible with 8 m class telescopes and modern instrumentation. The cluster population can be used as a good tracer of the star forming episodes undergone by the merging syste
We compute the evolution of the space-dependent mass distribution of galaxies in clusters due to binary aggregations by solving a space-dependent Smoluchowski equation. We derive the distribution of intergalactic distance for different ranges of mass
We describe the first results from two observational projects aimed at measuring the amount and spatial distribution of dark matter in distant early-type galaxies (E/S0s) and clusters of galaxies. At the galaxy scale, the Lenses Structure and Dynamic
Theoretical models for the expected merger rates of intermediate-mass black holes (IMBHs) are vital for planned gravitational-wave detection experiments such as the Laser Interferometer Space Antenna (LISA). Using collisionless $N$-body simulations o
Large galaxies may contain an atmosphere of hot interstellar X-ray gas, and the temperature and radial density profile of this gas can be used to measure the total mass of the galaxy contained within a given radius r. We use this technique for 102 ea