ترغب بنشر مسار تعليمي؟ اضغط هنا

The dark matter halos of spheroidal galaxies and clusters of galaxies

484   0   0.0 ( 0 )
 نشر من قبل Tommaso Treu
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T.Treu




اسأل ChatGPT حول البحث

We describe the first results from two observational projects aimed at measuring the amount and spatial distribution of dark matter in distant early-type galaxies (E/S0s) and clusters of galaxies. At the galaxy scale, the Lenses Structure and Dynamics (LSD) Survey is gathering kinematic data for distant (up to $zsim1$) E/S0s that are gravitational lenses. A joint lensing and dynamical analysis constrains the fraction of dark matter within the Einstein radius, the mass-to-light ratio of the stellar component, and the total slope of the mass density profile. These properties and their evolution with redshift are briefly discussed in terms of the formation and evolution of E/S0 galaxies and measurement of the Hubble Constant from gravitational time delay systems. At the cluster scale -- after careful removal of the stellar component with a joint lensing and dynamical analysis -- systems with giant radial arcs can be used to measure precisely the inner slope of the dark matter halo. An HST search for radial arcs and the analysis of a first sample are briefly discussed in terms of the universal dark matter halos predicted by CDM simulations.



قيم البحث

اقرأ أيضاً

We present a simple technique to estimate mass-to-light (M/L) ratios of stellar populations based on two broadband photometry measurements, i.e. a color-M/L relation. We apply the color-M/L relation to galaxy rotation curves, using a large set of gal axies that span a great range in Hubble type, luminosity and scale size and that have accurately measured HI and/or Halpha rotation curves. Using the color-M/L relation, we construct stellar mass models of the galaxies and derive the dark matter contribution to the rotation curves. We compare our dark matter rotation curves with adiabatically contracted Navarro, Frenk, & White (1997, NFW hereafter) dark matter halos. We find that before adiabatic contraction most high surface brightness galaxies and some low surface brightness galaxies are well fit by a NFW dark matter profile. However, after adiabatic contraction, most galaxies are poorly fit in the central few kpc. The observed angular momentum distribution in the baryonic component is poorly matched by LambdaCDM model predictions, indicating that the angular momentum distribution is not conserved during the galaxy assembly process. We find that in most galaxies the dark matter distribution can be derived by scaling up the HI gas contribution. However, we find no consistent value for the scaling factor among all the galaxies.
200 - Risa H. Wechsler 2018
In our modern understanding of galaxy formation, every galaxy forms within a dark matter halo. The formation and growth of galaxies over time is connected to the growth of the halos in which they form. The advent of large galaxy surveys as well as hi gh-resolution cosmological simulations has provided a new window into the statistical relationship between galaxies and halos and its evolution. Here we define this galaxy-halo connection as the multi-variate distribution of galaxy and halo properties that can be derived from observations and simulations. This connection provides a key test of physical galaxy formation models; it also plays an essential role in constraints of cosmological models using galaxy surveys and in elucidating the properties of dark matter using galaxies. We review techniques for inferring the galaxy-halo connection and the insights that have arisen from these approaches. Some things we have learned are that galaxy formation efficiency is a strong function of halo mass; at its peak in halos around a pivot halo mass of 10^12 Msun, less than 20% of the available baryons have turned into stars by the present day; the intrinsic scatter in galaxy stellar mass is small, less than 0.2 dex at a given halo mass above this pivot mass; below this pivot mass galaxy stellar mass is a strong function of halo mass; the majority of stars over cosmic time were formed in a narrow region around this pivot mass. We also highlight key open questions about how galaxies and halos are connected, including understanding the correlations with secondary properties and the connection of these properties to galaxy clustering.
114 - Yasushi Suto 2002
Density profiles of cosmological virialized systems, or dark halos, have recently attracted much attention. I first present a brief historical review of numerical simulations to quantify the halo density profiles. Then I describe the latest results o n the universal density profile and their observational confrontation. Finally I discuss a clustering model of those halos with particular emphasis on the cosmological light-cone effect.
Deep optical/near-IR surface photometry of galaxies outside the Local Group have revealed faint and very red halos around objects as diverse as disk galaxies and starbursting dwarf galaxies. The colours of these structures are too extreme to be recon ciled with stellar populations similar to those seen in the stellar halos of the Milky Way or M31, and alternative explanations like dust reddening, high metallicities or nebular emission are also disfavoured. A stellar population obeying an extremely bottom-heavy initial mass function (IMF), is on the other hand consistent with all available data. Because of its high mass-to-light ratio, such a population would effectively behave as baryonic dark matter and could account for some of the baryons still missing in the low-redshift Universe. Here, we give an overview of current red halo detections, alternative explanations for the origin of the red colours and ongoing searches for red halos around types of galaxies for which this phenomenon has not yet been reported. A number of potential tests of the bottom-heavy IMF hypothesis are also discussed.
127 - Carlo Nipoti 2014
Simulations of the clustering of cold dark matter yield dark-matter halos that have central density cusps, but observations of totally dark-matter dominated dwarf spheroidal galaxies imply that they do not have cuspy central density profiles. We use analytic calculations and numerical modelling to argue that whenever stars form, central density cusps are likely to be erased. Gas that accumulates in the potential well of an initially cuspy dark-matter halo settles into a disc. Eventually the surface density of the gas exceeds the threshold for fragmentation into self-gravitating clouds. The clouds are massive enough to transfer energy to the dark-matter particles via dynamical friction on a short time-scale. The halos central cusp is heated to form a core with central logarithmic density slope gamma=0 before stellar feedback makes its impact. Since star formation is an inefficient process, the clouds are disrupted by feedback when only a small fraction of their mass has been converted to stars, and the dark matter dominates the final mass distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا