ترغب بنشر مسار تعليمي؟ اضغط هنا

The structure and radiation spectra of illuminated accretion disks in AGN. II. Flare/spot model of X-ray variability

244   0   0.0 ( 0 )
 نشر من قبل Bozena Czerny
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss a model of X-ray variability of active galactic nuclei (AGN). We consider multiple spots which originate on the surface of an accretion disk following intense irradiation by coronal flares. The spots move with the disk around the central black hole and eventually decay while new spots continuously emerge. We construct time sequences of the spectra of the spotted disk and compute the corresponding energy-dependent fractional variability amplitude. We explore the dependence on the disk inclination and other model parameters. AGN seen at higher inclination with respect to the observer, such as Seyfert 2 galaxies, are expected to have fractional variability amplitude of the direct emission by a factor of a few higher than objects seen face on, such as the Seyfert 1s.



قيم البحث

اقرأ أيضاً

[abridged] Extending the work of Czerny et al. (2004), we model the fractional variability amplitude due to distributions of hot spots co-orbiting on the accretion disk around a supermassive black hole. From defined radial distributions, our code sam ples random positions for the hot spots across the disk. The local spot emission is computed as reprocessed radiation coming from a compact primary source above the disk. The structure of the hot spot and the anisotropy of the re-emission are taken into account. We compute the fractional variability spectra expected from such spot ensembles and investigate dependencies on the parameters describing the radial spot distribution. We consider the fractional variability F_var with respect to the spectral mean and also the so-called point-to-point F_pp. Our method includes relativistic corrections for the curved space-time; the black hole angular momentum is a free parameter and subject to the fitting procedure. We confirm that the rms-variability spectra involve intrinsic randomness at a significant level when the number of flares appearing during the total observation time is too small. Furthermore, F_var is not always compatible with F_pp. For MCG -6-30-15, we can reproduce the short-timescale variability and model the suppressed variability in the energy range of the Kalpha line without any need to postulate reprocessing farther away from the center. An increasing rate of energy production by the flares toward the center of the disk, a fast rotation of the central black hole, and considerable suppression of the primary flare emission are required. The modeled line remains consistent with the measured equivalent width of the iron Kalpha line complex.
A large fraction of accreting black hole and neutron stars systems present clear evidence of the reprocessing of X-rays in the atmosphere of an optically-thick accretion disk. The main hallmarks of X-ray reflection include fluorescent K-shell emissio n lines from iron ($sim 6.4-6.9$ keV), the absorption iron K-edge ($sim 7-9$ keV), and a broad featureless component known as the Compton hump ($sim 20-40$ keV). This Compton hump is produced as the result of the scattering of high-energy photons ($E gtrsim 10$ keV) of the relatively colder electrons ($T_e sim 10^5-10^7$ K) in the accretion disk, in combination with photoelectric absorption from iron. The treatment of this process in most current models of ionized X-ray reflection has been done using an approximated Gaussian redistribution kernel. This approach works sufficiently well up to $sim100$ keV, but it becomes largely inaccurate at higher energies and at relativistic temperatures ($T_esim10^9$ K). We present new calculations of X-ray reflection using a modified version of our code XILLVER, including an accurate solution for Compton scattering of the reflected unpolarized photons in the disk atmosphere. This solution takes into account quantum electrodynamic and relativistic effects allowing the correct treatment of high photon energies and electron temperatures. We show new reflection spectra computed with this model, and discuss the improvements achieved in the reproducing the correct shape of the Compton hump, the discrepancies with previous calculations, and the expected impact of these new models in the interpretation of observational data.
We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow and the g ravity and rotation of the central black hole. The absorption edges in the spectra suffer severe energy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the reflection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.
Relativistic reflection features in the X-ray spectra of black hole binaries and AGNs are thought to be produced through illumination of a cold accretion disk by a hot corona. In this work, we assume that the corona has the shape of an infinitesimall y thin disk with its central axis the same as the rotational axis of the black hole. The corona can either be static or corotate with the accretion disk. We calculate the disks emissivity profiles and iron line shapes for a set of coronal radii and heights. We incorporate these emissivity profiles into RELXILL_NK and we simulate some observations of a black hole binary with NuSTAR to study the impact of a disk-like coronal geometry on the measurement of the properties of the system and, in particular, on the possibility of testing the Kerr nature of the source. We find that with a disk-like corona it becomes difficult, in general, to constrain the geometric properties of the black hole spacetime, while the astrophysical properties of the accretion disk are still well recovered.
150 - M. Dovciak , V. Karas , G. Matt 2007
We study light curves and spectra (equivalent widths of the iron line and some other spectral characteristics) which arise by reprocessing on the surface of an accretion disc, following its illumination by a primary off-axis source - an X-ray flare, assumed to be a point-like source just above the accretion disc. We consider all general relativity effects (energy shifts, light bending, time delays, delay amplification due to the spot motion) near a rotating black hole. For some sets of parameters the reflected flux exceeds the flux from the primary component. We show that the orbit-induced variations of the equivalent width with respect to its mean value can be as high as 30% for an observers inclination of 30 degrees, and much more at higher inclinations. We calculate the ratio of the reflected flux to the primary flux and the hardness ratio which we find to vary significantly with the spot phase mainly for small orbital radii. This offers the chance to estimate the lower limit of the black hole spin if the flare arises close to the black hole. We show the results for different values of the flare orbital radius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا