ترغب بنشر مسار تعليمي؟ اضغط هنا

W Hya : molecular inventory by ISO-SWS

101   0   0.0 ( 0 )
 نشر من قبل Kay Justtanont
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Infrared spectroscopy is a powerful tool to probe the inventory of solid state and molecular species in circumstellar ejecta. Here we analyse the infrared spectrum of the Asymptotic Giant Branch star W Hya, obtained by the Short and Long Wavelength Spectrometers on board of the Infrared Satellite Observatory. These spectra show evidence for the presence of amorphous silicates, aluminum oxide, and magnesium-iron oxide grains. We have modelled the spectral energy distribution using laboratory measured optical properties of these compounds and derive a total dust mass loss rate of 3E-10 Msol/yr. We find no satisfactory fit to the 13 micron dust emission feature and the identification of its carrier is still an open issue. We have also modelled the molecular absorption bands due to H2O, OH, CO, CO2, SiO, and SO2 and estimated the excitation temperatures for different bands which range from 300 to 3000K. It is clear that different molecules giving rise to these absorption bands originate from different gas layers. We present and analyse high resolution Fabry-Perot spectra of the three CO2 bands in the 15 micron region. In these data, the bands are resolved into individual Q-lines in emission, which allows the direct determination of the excitation temperature and column density of the emitting gas. This reveals the presence of a warm (about 450K) extended layer of CO2, somewhere between the photosphere and the dust formation zone. The gas in this layer is cooler than the 1000K CO2 gas responsible for the low-resolution absorption bands at 4.25 and 15 micron. The rotational and vibrational excitation temperatures derived from the individual Q-branch lines of CO2 are different (450K and 150K, respectively) so that the CO2 level population is not in LTE.



قيم البحث

اقرأ أيضاً

199 - T. Khouri , A. de Koter , L. Decin 2014
The evolution of low- and intermediate-mass stars on the asymptotic giant branch (AGB) is mainly controlled by the rate at which these stars lose mass in a stellar wind. Understanding the driving mechanism and strength of the stellar winds of AGB sta rs and the processes enriching their surfaces with products of nucleosynthesis are paramount to constraining AGB evolution and predicting the chemical evolution of galaxies. In a previous paper we have constrained the structure of the outflowing envelope of W Hya using spectral lines of the $^{12}$CO molecule. Here we broaden this study by modelling an extensive set of H$_{2}$O and $^{28}$SiO lines observed by the three instruments on board Herschel using a state-of-the-art molecular excitation and radiative transfer code. The oxygen isotopic ratios and the $^{28}$SiO abundance profile can be connected to the initial stellar mass and to crucial aspects of dust formation at the base of the stellar wind, respectively. The modelling of H$_{2}$O and $^{28}$SiO confirms the properties of the envelope model of W Hya derived from $^{12}$CO lines. We find an H$_2$O ortho-to-para ratio of 2.5,$^{+2.5}_{-1.0}$, consistent with what is expected for an AGB wind. The O$^{16}$/O$^{17}$ ratio indicates that W Hya has an initial mass of about 1.5 M$_odot$. Although the ortho- and para-H$_{2}$O lines observed by HIFI appear to trace gas of slightly different physical properties, a turbulence velocity of $0.7pm0.1$ km s$^{-1}$ fits the HIFI lines of both spin isomers and those of $^{28}$SiO well. The ortho- and para-H$_2^{16}$O and $^{28}$SiO abundances relative to H$_{2}$ are $(6^{+3}_{-2}) times 10^{-4}$, $(3^{+2}_{-1}) times 10^{-4}$, and $(3.3pm 0.8)times 10^{-5}$, respectively. Assuming a solar silicon-to-carbon ratio, the $^{28}$SiO line emission model is consistent with about one-third of the silicon atoms being locked up in dust particles.
Mid-infrared (MIR) imaging and spectroscopic observations are presented for a well defined sample of eight closely interacting (CLO) pairs of spiral galaxies that have overlapping disks and show enhanced far-infrared (FIR) emission. The goal is to st udy the star formation distribution in CLO pairs, with special emphasis on the role of overlap starbursts. Observations were made with the Infrared Space Observatory (ISO) using the CAM and SWS instruments. The ISO~CAM maps, tracing the MIR emission of warm dust heated by young massive stars, are compared to new ground based H$alpha$ and R-band images. We identify three possible subgroups in the sample, classified according to the star formation morphology: (1) advanced mergers (Arp~157, Arp~244 and Arp~299), (2) severely disturbed systems (Arp~81 and Arp~278), and (3) less disturbed systems (Arp~276, KPG 347 and KPG 426). Localized starbursts are detected in the overlap regions in all five pairs of subgroups (1) and (2), suggesting that they are a common property in colliding systems. Except for Arp~244, the overlap starburst is usually fainter than the major nuclear starburst in CLO pairs. Star formation in less disturbed systems is often distributed throughout the disks of both galaxies with no overlap starburst detected in any of them. These systems also show less enhanced FIR emission, suggesting that they are in an earlier interaction stage than pairs of the other two subgroups where the direct disk collisions have probably not yet occurred.
62 - L. Decin 2000
A detailed spectroscopic study of the ISO-SWS data of the red giant Alpha Tau is presented, which enables not only the accurate determination of the stellar parameters of Alpha Tau, but also serves as a critical review of the ISO-SWS calibration. T his study is situated in a broader context of an iterative process in which both accurate observations of stellar templates and cool star atmosphere models are involved to improve the ISO-SWS calibration process as well as the theoretical modelling of stellar atmospheres. Therefore a sample of cool stars, covering the whole A0 -- M8 spectral classification, has been observed in order to disentangle calibration problems and problems in generating the theoretical models and corresponding synthetic spectrum. By using stellar parameters found in the literature large discrepancies were seen between the ISO-SWS data and the generated synthetic spectrum of Alpha Tau. A study of the influence of various stellar parameters on the theoretical models and synthetic spectra, in conjunction with the Kolmogorov-Smirnov test to evaluate objectively the goodness-of-fit, enables us to pin down the stellar parameters with a high accuracy: Teff = 3850 +/- 70 K, log g = 1.50 +/- 0.15, M = 2.3 +/- 0.8 Msun, z = -0.15 +/- 0.20 dex, microturbulence = 1.7 +/- 0.3 km/s, 12C/13C= 10 +/- 1, abundance of C = 8.35 +/- 0.20 dex, abundance of N= 8.35 +/- 0.25 dex, abundance of O = 8.83 +/- 0.15 dex and the angular diameter is 20.77 +/- 0.83 mas. These atmospheric parameters were then compared with the results provided by other authors using other methods and/or spectra.
We present new ISO-SWS data for a sample of 27 starburst galaxies, and with these data examine the issues of formation and evolution of the most massive stars in starburst galaxies. Using starburst models which incorporate time evolution, new stellar atmosphere models for massive stars, and a starburst model geometry derived from observations of the prototypical starburst M82, we model the integrated mid-infrared line ratio [NeIII](15.6 microns)/[NeII](12.8 microns). This line ratio is sensitive to the hardness of the stellar energy distribution and therefore to the most massive stars present. We conclude from our models, with consideration of recent determinations of the stellar census in local, high-mass star forming regions, that the [NeIII]/[NeII] ratios we measure are consistent with the formation of massive (~50-100 solar mass) stars in most starbursts. In this framework, the low nebular excitation inferred from the measured line ratios can be attributed to aging effects. By including estimates of the ratio of infrared-to-Lyman continuum luminosity for the galaxies in our sample, we further find that most starbursts are relatively short-lived (1-10 million years), only a few O-star lifetimes. We discuss a possible cause of such short events: the effectiveness of stellar winds and supernovae in destroying the starburst environment.
175 - T. Khouri , A. de Koter , L. Decin 2014
Asymptotic giant branch (AGB) stars lose their envelopes by means of a stellar wind whose driving mechanism is not understood well. Characterizing the composition and thermal and dynamical structure of the outflow provides constraints that are essent ial for understanding AGB evolution, including the rate of mass loss and isotopic ratios. We modeled the CO emission from the wind of the low mass-loss rate oxygen-rich AGB star W Hya using data obtained by the HIFI, PACS, and SPIRE instruments onboard the Herschel Space Observatory and ground-based telescopes. $^{12}$CO and $^{13}$CO lines are used to constrain the intrinsic $^{12}$C/$^{13}$C ratio from resolved HIFI lines. The acceleration of the outflow up to about 5.5 km/s is quite slow and can be represented by a beta-type velocity law with index 5. Beyond this point, acceleration up the terminal velocity of 7 km/s is faster. Using the J=10-9, 9-8, and 6-5 transitions, we find an intrinsic $^{12}$C/$^{13}$C ratio of $18pm10$ for W Hya, where the error bar is mostly due to uncertainties in the $^{12}$CO abundance and the stellar flux around 4.6 $mu$m. To match the low-excitation CO lines, these molecules need to be photo-dissociated at about 500 stellar radii. The radial dust emission intensity profile measured by PACS images at 70 $mu$m shows substantially stronger emission than our model predicts beyond 20 arcsec. The initial slow acceleration of the wind implies inefficient wind driving in the lower part of the envelope. The final injection of momentum in the wind might be the result of an increase in the opacity thanks to the late condensation of dust species. The derived intrinsic isotopologue ratio for W Hya is consistent with values set by the first dredge-up and suggestive of an initial mass of 2 M$_odot$ or more. However, the uncertainty in the main-sequence mass derived based on this isotopologic ratio is large.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا