ترغب بنشر مسار تعليمي؟ اضغط هنا

An XMM-Newton observation of the nova-like variable UX UMa: spatially and spectrally resolved two-component X-ray emission

118   0   0.0 ( 0 )
 نشر من قبل Gabriel Pratt
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G.W. Pratt




اسأل ChatGPT حول البحث

In the optical and ultraviolet regions of the electromagnetic spectrum, UX Ursae Majoris is a deeply eclipsing cataclysmic variable. However, no soft X-ray eclipse was detected in ROSAT observations. We have obtained a 38 ksec XMM-Newton observation to further constrain the origin of the X-rays. The combination of spectral and timing information allows us to identify two components in the X-ray emission of the system. The soft component, dominant below photon energies of 2 keV, can be fitted with a multi-temperature plasma model and is uneclipsed. The hard component, dominant above 3 keV, can be fitted with a kT ~ 5 keV plasma model and appears to be deeply eclipsed. We suggest that the most likely source of the hard X-ray emission in UX UMa, and other systems in high mass transfer states, is the boundary layer.



قيم البحث

اقرأ أيضاً

100 - R. Baptista 1998
Time-resolved eclipse spectroscopy of the nova-like variable UX UMa obtained with the HST/FOS on 1994 August and November is analyzed with eclipse mapping techniques to produce spatially resolved spectra of its accretion disc and gas stream as a func tion of distance from disc centre. The inner accretion disc is characterized by a blue continuum filled with absorption bands and lines which cross over to emission with increasing disc radius, similar to that reported by Rutten et al (1994) at optical wavelengths. The comparison of spatially resolved spectra at different azimuths reveals a significant asymmetry in the disc emission at UV wavelengths, with the disc side closest to the secondary star showing pronounced absorption by an `iron curtain and a Balmer jump in absorption. These results suggest the existence of an absorbing ring of cold gas whose density and/or vertical scale increase with disc radius. The spectrum of the infalling gas stream is noticeably different from the disc spectrum at the same radius suggesting that gas overflows through the impact point at disc rim and continues along the stream trajectory, producing distinct emission down to 0.1 RL1. The radial temperature profiles of the continuum maps are well described by a steady-state disc model in the inner and intermediate disc regions. There is evidence of an increase in the mass accretion rate from August to November (from Mdot= 10^{-8.3 +/- 0.1} to 10^{-8.1 +/- 0.1} Msun/yr), in accordance with the observed increase in brightness. Since the UX UMa disc seems to be in a high mass accretion, high-viscosity regime in both epochs, this result suggests that the mass transfer rate of UX UMa varies substantially (~ 50 per cent) on time scales of a few months.
We carry out spatially resolved spectral analysis with a physical scale of $sim$10 pc in X-ray for the superbubble 30 Dor C, which has the largest diameter of $sim$80 pc and the brightest non-thermal emission in superbubbles for the first time. We ai m at investigating spatial variation of the physical properties of non-thermal emission as detected in some supernova remnants in order to study particle acceleration in a superbubble. We demonstrated that non-thermal components are detected in all the regions covering the entire field of 30 Dor C. The spectra in the west region of 30 Dor C can be described with a combination of the thermal and non-thermal components while the spectra in the east region can be fitted with the non-thermal component alone. The photon index and absorption corrected intensity in 2-10 keV of the non-thermal component show spatial variation from $sim$2.0 to $sim$3.7 and (4-130) $times$ 10$^{-8}$ erg~s$^{-1}$~cm$^{-2}$~str$^{-1}$, respectively, and the negative correlation between the non-thermal physical properties is observed. The temperature and normalization of the thermal component also vary within a range of $sim$0.2-0.3 keV and $sim$0.2-7 $times$ 10$^{17}$ cm$^{-5}$ str$^{-1}$, respectively, and the positive correlation between the photon index and the normalization is also detected. We revealed the correlations in a supperbubble for the first time as is the case in SNRs, which suggests the possibility that the same acceleration mechanism works also in the supperbubble.
161 - F. M. Schock 2010
We present an X-ray analysis and a model of the nonthermal emission of the pulsar wind nebula (PWN) MSH15-52. We analyzed XMM-Newton data to obtain the spatially resolved spectral parameters around the pulsar PSRB1509-58. A steepening of the fitted p ower-law spectra and decrease in the surface brightness is observed with increasing distance from the pulsar. In the second part of this paper, we introduce a model for the nonthermal emission, based on assuming the ideal magnetohydrodynamic limit. This model is used to constrain the parameters of the termination shock and the bulk velocity of the leptons in the PWN. Our model is able to reproduce the spatial variation of the X-ray spectra. The parameter ranges that we found agree well with the parameter estimates found by other authors with different approaches. In the last part of this paper, we calculate the inverse Compton emission from our model and compare it to the emission detected with the H.E.S.S. telescope system. Our model is able to reproduce the flux level observed with H.E.S.S., but not the spectral shape of the observed TeV {gamma}-ray emission.
We present measurements of the Galactic halos X-ray emission for 110 XMM-Newton sight lines, selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on ~4/5 of our sight lines. The t emperature is fairly uniform (median = 2.22e6 K, interquartile range = 0.63e6 K), while the emission measure and intrinsic 0.5--2.0 keV surface brightness vary by over an order of magnitude (~(0.4-7)e-3 cm^-6 pc and ~(0.5-7)e-12 erg cm^-2 s^-1 deg^-2, respectively, with median detections of 1.9e-3 cm^-6 pc and 1.5e-12 erg cm^-2 s^-1 deg^-2, respectively). The high-latitude sky contains a patchy distribution of few million degree gas. This gas exhibits a general increase in emission measure toward the inner Galaxy in the southern Galactic hemisphere. However, there is no tendency for our observed emission measures to decrease with increasing Galactic latitude, contrary to what is expected for a disk-like halo morphology. The measured temperatures, brightnesses, and spatial distributions of the gas can be used to place constraints on models for the dominant heating sources of the halo. We provide some discussion of such heating sources, but defer comparisons between the observations and detailed models to a later paper.
We present the results of two XMM-Newton observations of Jupiter carried out in 2003 for 100 and 250 ks (or 3 and 7 planet rotations) respectively. X-ray images from the EPIC CCD cameras show prominent emission from the auroral regions in the 0.2 - 2 .0 keV band: the spectra are well modelled by a combination of emission lines, including most prominently those of highly ionised oxygen (OVII and OVIII). In addition, and for the first time, XMM-Newton reveals the presence in both aurorae of a higher energy component (3 - 7 keV) which is well described by an electron bremsstrahlung spectrum. This component is found to be variable in flux and spectral shape during the Nov. 2003 observation, which corresponded to an extended period of intense solar activity. Emission from the equatorial regions of Jupiters disk is also observed, with a spectrum consistent with that of solar X-rays scattered in the planets upper atmosphere. Jupiters X-rays are spectrally resolved with the RGS which clearly separates the prominent OVII contribution of the aurorae from the OVIII, FeXVII and MgXI lines, originating in the low-latitude disk regions of the planet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا