ﻻ يوجد ملخص باللغة العربية
We present an X-ray analysis and a model of the nonthermal emission of the pulsar wind nebula (PWN) MSH15-52. We analyzed XMM-Newton data to obtain the spatially resolved spectral parameters around the pulsar PSRB1509-58. A steepening of the fitted power-law spectra and decrease in the surface brightness is observed with increasing distance from the pulsar. In the second part of this paper, we introduce a model for the nonthermal emission, based on assuming the ideal magnetohydrodynamic limit. This model is used to constrain the parameters of the termination shock and the bulk velocity of the leptons in the PWN. Our model is able to reproduce the spatial variation of the X-ray spectra. The parameter ranges that we found agree well with the parameter estimates found by other authors with different approaches. In the last part of this paper, we calculate the inverse Compton emission from our model and compare it to the emission detected with the H.E.S.S. telescope system. Our model is able to reproduce the flux level observed with H.E.S.S., but not the spectral shape of the observed TeV {gamma}-ray emission.
We present the results of a BeppoSAX observation of the Supernova Remnant MSH 15-52, associated with the pulsar PSR B1509-58, and discuss its main morphological and spectroscopic properties in the 1.6--200 keV energy range (MECS and PDS instruments).
SPT0346-52 is one of the most most luminous and intensely star-forming galaxies in the universe, with L_FIR > 10^13 L_sol and Sigma_SFR ~ 4200 M_sol yr^-1 kpc^-2. In this paper, we present ~0.15 ALMA observations of the [CII]158micron emission line i
W49B is the youngest SNR to date that exhibits recombining plasma. The two prevailing theories of this overionization are rapid cooling via adiabatic expansion or through thermal conduction with an adjacent cooler medium. To constrain the origin of t
We present the results of observations of the PSR B1509$-$58/MSH 15$-$52 system in X-rays ($2-250$ keV) by the Rossi X-ray Timing Explorer. The spectra of the peak of the pulsed component (radio phase $0.17-0.53$) is fit by a power law of photon inde
We study the Frequency Resolved Spectra of the Seyfert galaxy MCG -6-30-15 obtained during two recent XMM-Newton observations. Splitting the Fourier spectra in soft (<2 keV) and hard (>2 keV) bands, we find that the soft band has a variability amplit