ﻻ يوجد ملخص باللغة العربية
We model the broad-band spectral energy distribution of the innermost core-jet region of the redshift z=1.187 quasar PKS 1127-145. We propose a scenario where the high energy photons are produced via the Compton scattering of thermal IR radiation by the relativistic particles in a parsec-scale jet. The high energy spectrum, together with the observed radio variability and superluminal expansion, suggest that PKS 1127-145 may be a blazar, despite the fact that its optical/UV component is likely dominated by thermal radiation from an accretion disk. The relation of PKS 1127-145 to MeV - blazars is discussed.
The complex X-ray morphology of the 300 kpc long X-ray jet in PKS1127-145 (z=1.18 quasar) is clearly discerned in a ~100 ksec Chandra observation. The jet X-ray surface brightness gradually decreases by an order of magnitude going out from the core.
Flat-spectrum radio-quasars (FSRQs) are rarely detected at very-high-energies (VHE; E>100 GeV) due to their low-frequency-peaked SEDs. At present, only 6 FSRQs are known to emit VHE photons, representing only 7% of the VHE extragalactic catalog. Foll
PKS 1718$-$649 is one of the closest and most comprehensively studied candidates of a young active galactic nucleus (AGN) that is still embedded in its optical host galaxy. The compact radio structure, with a maximal extent of a few parsecs, makes it
Seyfert galaxies have traditionally been classified as radio-quiet active galactic nuclei. A proper consideration of the nuclear optical emission however proves that a majority of Seyferts are radio-loud. Kpc-scale radio lobes/bubbles are in fact rev
The high redshift GPS quasar PKS 0858-279 exhibits the following properties which make the source unusual. Our RATAN-600 monitoring of 1-22 GHz spectrum has detected broad-band radio variability with high amplitude and relatively short time scale. In