ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Radio Emission in Seyfert Galaxies on Parsec- and Kiloparsec-scales

279   0   0.0 ( 0 )
 نشر من قبل Preeti Kharb
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Seyfert galaxies have traditionally been classified as radio-quiet active galactic nuclei. A proper consideration of the nuclear optical emission however proves that a majority of Seyferts are radio-loud. Kpc-scale radio lobes/bubbles are in fact revealed in sensitive observations at low radio frequencies of several Seyferts. Through the use of very long baseline interferometry, we have been able to determine the direction of the parsec-scale jets in some of these Seyfert galaxies. The misalignment between the parsec-scale jets and the kpc-scale lobes that is typically observed, is either suggestive of no connection between the two, or the presence of curved jets that power the radio lobes. In this context, we briefly discuss our new low radio frequency GMRT observations of two Seyfert galaxies with lobes.



قيم البحث

اقرأ أيضاً

Seyfert and LINER galaxies are known to exhibit compact radio emission on $sim$ 10 to 100 parsec scales, but larger Kiloparsec-Scale Radio structures (KSRs) often remain undetected in sub-arcsec high resolution observations. We investigate the preval ence and nature of KSRs in Seyfert and LINER galaxies using the 1.4 GHz VLA FIRST and NVSS observations. Our sample consists of 2651 sources detected in FIRST and of these 1737 sources also have NVSS counterparts. Considering the ratio of total to peak flux density ($theta$ $=$ ${rm (S_{rm int}/S_{rm peak})^{1/2}}$) as a parameter to infer the presence of extended radio emission we show that $geq$ 30$%$ of FIRST detected sources possess extended radio structures on scales larger than 1.0 kpc. The use of low-resolution NVSS observations help us to recover faint extended KSRs that are resolved out in FIRST observations and results in $geq$ 42.5$%$ KSR sources in FIRST-NVSS subsample. This fraction is only a lower limit owing to the combination of projection, resolution and sensitivity effects. Our study demonstrates that KSRs may be more common than previously thought and are found across all redshifts, luminosities and radio-loudness. The extranuclear radio luminosity of KSR sources is found to be positively correlated with the core radio luminosity as well as the [O~III] $lambda$5007{AA} line luminosity and this can be interpreted as KSRs being powered by AGN rather than star-formation. The distributions of the FIR-to-radio ratios and mid-IR colors of KSR sources are also consistent with their AGN origin. However, contribution from star-formation cannot be ruled out particularly in sources with low radio luminosities.
95 - Preeti Kharb 2018
Radio outflows of extents ranging from a few parsecs to a few kiloparsecs are present in Seyfert and LINER galaxies that make up the `radio-quiet AGN class. AGN jets and/or starburst superwinds have been suggested to produce these outflows. We presen t a brief review of radio outflows in Seyfert and LINER galaxies on different spatial scales. Very long baseline interferometry (VLBI) observations of several individual Seyferts and LINERs suggest a link between AGN jets on parsec-scales and their kiloparsec-scale radio structures (KSRs). The whole range of misalignment angles present between the parsec-scale and the kpc-scale outflows in Seyfert galaxies and LINERs, supports the prevalence of bent outflows in them. Episodic AGN activity is suggested by the presence of multiple misaligned KSRs in several Seyfert galaxies in total and polarized intensity images; this latter result provides further support for an AGN jet origin of the KSRs present in Seyfert and LINER galaxies.
We have discovered kiloparsec-scale extended radio emission in three narrow-line Seyfert 1 galaxies (NLS1s) in sub-arcsecond resolution 9 GHz images from the Karl G. Jansky Very Large Array (VLA). We find all sources show two-sided, mildly core-domin ated jet structures with diffuse lobes dominated by termination hotspots. These span 20-70 kpc with morphologies reminiscent of FR II radio galaxies, while the extended radio luminosities are intermediate between FR I and FR II sources. In two cases the structure is linear, while a $45^{circ}$ bend is apparent in the third. Very Long Baseline Array images at 7.6 GHz reveal parsec-scale jet structures, in two cases with extended structure aligned with the inner regions of the kiloparsec-scale jets. Based on this alignment, the ratio of the radio core luminosity to the optical luminosity, the jet/counter-jet intensity and extension length ratios, and moderate core brightness temperatures ($lesssim10^{10}$ K), we conclude these jets are mildly relativistic ($betalesssim0.3$, $deltasim1$-$1.5$) and aligned at moderately small angles to the line of sight (10-15$^{circ}$). The derived kinematic ages of $sim10^6$-$10^7$ y are much younger than radio galaxies but comparable to other NLS1s. Our results increase the number of radio-loud NLS1s with known kiloparsec-scale extensions from seven to ten and suggest that such extended emission may be common, at least among the brightest of these sources.
We conducted Very Long Baseline Array (VLBA) observations of seven nearby narrow-line Seyfert 1 (NLS1) galaxies at 1.7 GHz (18cm) with milli-arcsecond resolution. This is the first systematic very long baseline interferometry (VLBI) study focusing on the central parsec-scale regions of radio-quiet NLS1s. Five of the seven were detected at a brightness temperature of >~5x10^6 K and contain radio cores with high brightness temperatures of >6x10^7 K, indicating a nonthermal process driven by jet-producing central engines as is observed in radio-loud NLS1s and other active galactic nucleus (AGN) classes. VLBA images of MRK 1239, MRK 705, and MRK 766 exhibit parsec-scale jets with clear linear structures. A large portion of the radio power comes from diffuse emission components that are distributed within the nuclear regions (<~300 pc), which is a common characteristic throughout the observed NLS1s. Jet kinetic powers limited by the Eddington limit may be insufficient to allow the jets escape to kiloparsec scales for these radio-quiet NLS1s with low-mass black holes of <~10^7 M_sun.
We present subarcsecond resolution mid-infrared (mid-IR) photometry in the wavelength range from 8 to 20 micron of eighteen Seyfert galaxies, reporting high spatial resolution nuclear fluxes for the entire sample. We construct spectral energy distrib utions (SEDs) that the AGN dominates adding near-IR measurements from the literature at similar angular resolution. The IR SEDs of intermediate-type Seyferts are flatter and present higher 10 to 18 micron ratios than those of Seyfert 2. We fit the individual SEDs with clumpy torus models using the in-house-developed BayesClumpy tool. The models reproduce the high spatial resolution measurements. Regardless of the Seyfert type, even with high spatial resolution data, near- to mid-IR SED fitting poorly constrains the radial extent of the torus. For the Seyfert 2, we find that edge-on geometries are more probable than face-on views, with a number of clouds along equatorial rays of N = 5-15. The 10 micron silicate feature is generally modeled in shallow absorption. For the intermediate-type Seyferts, N and the inclination angle of the torus are lower than those of the Seyfert 2 nuclei, with the silicate feature appearing in weak emission or absent. The columns of material responsible for the X-ray absorption are larger than those inferred from the model fits for most of the galaxies, which is consistent with X-ray absorbing gas being located within the dust sublimation radius whereas the mid-IR flux arises from an area farther from the accretion disc. The fits yield both the bolometric luminosity of the intrinsic AGN and the torus integrated luminosity, from which we derive the reprocessing efficiency of the torus. In the models, the outer radial extent of the torus scales with the AGN luminosity, and we find the tori to be confined to scales less than 5 pc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا