ﻻ يوجد ملخص باللغة العربية
Simulations of the clustering of cold dark matter yield dark-matter halos that have central density cusps, but observations of totally dark-matter dominated dwarf spheroidal galaxies imply that they do not have cuspy central density profiles. We use analytic calculations and numerical modelling to argue that whenever stars form, central density cusps are likely to be erased. Gas that accumulates in the potential well of an initially cuspy dark-matter halo settles into a disc. Eventually the surface density of the gas exceeds the threshold for fragmentation into self-gravitating clouds. The clouds are massive enough to transfer energy to the dark-matter particles via dynamical friction on a short time-scale. The halos central cusp is heated to form a core with central logarithmic density slope gamma=0 before stellar feedback makes its impact. Since star formation is an inefficient process, the clouds are disrupted by feedback when only a small fraction of their mass has been converted to stars, and the dark matter dominates the final mass distribution.
We have found that the high velocity dispersions of dwarf spheroidal galaxies (dSphs) can be well explained by Milky Way (MW) tidal shocks, which reproduce precisely the gravitational acceleration previously attributed to dark matter (DM). Here we su
The nature of Milky Way dwarf spheroidals (MW dSphs) has been questioned, in particular whether they are dominated by dark matter (DM). Here we investigate an alternative scenario, for which tidal shocks are exerted by the MW to DM-free dSphs after a
Measuring the dark matter distribution in dwarf spheroidal galaxies (dSphs) from stellar kinematics is crucial for indirect dark matter searches, as these distributions set the fluxes for both dark matter annihilation (J-Factor) and decay (D-Factor).
The H.E.S.S. experiment is an array of four identical imaging atmospheric Cherenkov telescopes in the Southern hemisphere, designed to observe very high energy gamma-rays (E > 100 GeV). These high energy gamma-rays can be used to search for annihilat
We use cosmological hydrodynamical simulations of the APOSTLE project along with high-quality rotation curve observations to examine the fraction of baryons in {Lambda}CDM haloes that collect into galaxies. This galaxy formation efficiency correlates