ﻻ يوجد ملخص باللغة العربية
Large astronomical databases obtained from sky surveys such as the SuperCOSMOS Sky Survey (SSS) invariably suffer from spurious records coming from artefactual effects of the telescope, satellites and junk objects in orbit around earth and physical defects on the photographic plate or CCD. Though relatively small in number these spurious records present a significant problem in many situations where they can become a large proportion of the records potentially of interest to a given astronomer. Accurate and robust techniques are needed for locating and flagging such spurious objects, and we are undertaking a programme investigating the use of machine learning techniques in this context. In this paper we focus on the four most common causes of unwanted records in the SSS: satellite or aeroplane tracks, scratches, fibres and other linear phenomena introduced to the plate, circular halos around bright stars due to internal reflections within the telescope and diffraction spikes near to bright stars. Appropriate techniques are developed for the detection of each of these. The methods are applied to the SSS data to develop a dataset of spurious object detections, along with confidence measures, which can allow these unwanted data to be removed from consideration. These methods are general and can be adapted to other astronomical survey data.
Large astronomical databases obtained from sky surveys such as the SuperCOSMOS Sky Surveys (SSS) invariably suffer from a small number of spurious records coming from artefactual effects of the telescope, satellites and junk objects in orbit around e
Current work on lane detection relies on large manually annotated datasets. We reduce the dependency on annotations by leveraging massive cheaply available unlabelled data. We propose a novel loss function exploiting geometric knowledge of lanes in H
In order to extract cosmological information from observations of the millimeter and submillimeter sky, foreground components must first be removed to produce an estimate of the cosmic microwave background (CMB). We developed a machine-learning appro
In a recent paper, M. Lifshits and E. Setterqvist introduced the taut string of a Brownian motion $w$, defined as the function of minimal quadratic energy on $[0,T]$ staying in a tube of fixed width $h>0$ around $w$. The authors showed a Law of Large
Spicules are intermittently rising above the surface of the Sun eruptions; EUV jets are now also reported in immediately above layers. The variation of spicule orientation with respect to the solar latitude, presumably reflecting the confinement and