ترغب بنشر مسار تعليمي؟ اضغط هنا

About the directional properties of Solar Spicules from Hough Transform analysis

134   0   0.0 ( 0 )
 نشر من قبل Ehsan Tavabi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spicules are intermittently rising above the surface of the Sun eruptions; EUV jets are now also reported in immediately above layers. The variation of spicule orientation with respect to the solar latitude, presumably reflecting the confinement and the focusing of ejecta by the surrounding global coronal magnetic field, is an important parameter to understand their dynamical properties. A wealth of high resolution images of limb spicules are made available in H CaII emission from the SOT Hinode mission. Furthermore, the Hough transform is applied to the resulting images for making a statistical analysis of spicule orientations in different regions around the solar limb, from the pole to the equator. Spicules are visible in a radial direction in the polar regions with a tilt angle (less than 200). The tilt angle is even reduced to 10 degrees inside the coronal hole with open magnetic field lines and at the lower latitude the tilt angle reaches values in excess of 50 degree.



قيم البحث

اقرأ أيضاً

223 - R. Centeno 2009
Determining the magnetic field of solar spicules is vital for developing adequate models of these plasma jets, which are thought to play a key role in the thermal, dynamic, and magnetic structure of the chromosphere. Here we report on magnetic spicul e properties in a very quiet region of the off-limb solar atmosphere, as inferred from new spectropolarimetric observations in the HeI 10830 A triplet. We have used a novel inversion code for Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects (HAZEL) to interpret the observations. Magnetic fields as strong as 40G were unambiguously detected in a very localized area of the slit, which may represent a possible lower value of the field strength of organized network spicules.
We aim to study the formation and evolution of solar spicules by means of numerical simulations of the solar atmosphere. With the use of newly developed JOANNA code, we numerically solve two-fluid (for ions + electrons and neutrals) equations in 2D C artesian geometry. We follow the evolution of a spicule triggered by the time-dependent signal in ion and neutral components of gas pressure launched in the upper chromosphere. We use the potential magnetic field, which evolves self-consistently, but mainly plays a passive role in the dynamics. Our numerical results reveal that the signal is steepened into a shock that propagates upward into the corona. The chromospheric cold and dense plasma lags behind this shock and rises into the corona with a mean speed of 20-25 km s$^{-1}$. The formed spicule exhibits the upflow/downfall of plasma during its total lifetime of around 3-4 minutes, and it follows the typical characteristics of a classical spicule, which is modeled by magnetohydrodynamics. The simulated spicule consists of a dense and cold core that is dominated by neutrals. The general dynamics of ion and neutral spicules are very similar to each other. Minor differences in those dynamics result in different widths of both spicules with increasing rarefaction of the ion spicule in time.
85 - T. V. Zaqarashvili 2020
Hydrodynamic jets are unstable to the kink instability (m=1 mode in cylindrical geometry) owing to the centripetal force, which increases the transverse displacement of the jet. When the jet moves along a magnetic field, then the Lorentz force tries to decrease the displacement and stabilises the instability of sub-Alfvenic flows. The threshold of the instability depends on the Alfven Mach number (the ratio of Alfven and jet speeds). We suggest that the dynamic kink instability may be of importance to explain observed transverse motions of type II spicules in the solar atmosphere. We show that the instability may start for spicules which rise up at the peripheries of vertically expanding magnetic flux tubes owing to the decrease of the Alfven speed in both, the vertical and the radial directions. Therefore, inclined spicules may be more unstable and have more higher transverse speeds. Periods and growth times of unstable modes in the conditions of type II spicules have the values of 30 s and 25-100 s, respectively, which are comparable to the life time of the structures. This may indicate to the interconnection between high speed flow and rapid disappearance of type II spicules in chromospheric spectral lines.
Using high resolution off-band ha data from the New Solar Telescope and Morlet wavelet analysis technique, we analyzed transverse motions of type II spicules observed near the North Pole of the Sun. Our new findings are that i) some of the observed t ype II spicules display kink or an inverse Y features, suggesting that their origin may be due to magnetic reconnection, and ii) type II spicules tend to display coherent transverse motions/oscillations. Also, the wavelet analysis detected significant presence of high frequency oscillations in type II spicules, ranging from 30 to 180 s with the the average period of 90 s. We conclude that at least some of type II spicules and their coherent transverse motions may be caused by reconnection between large scale fields rooted in the intergranular lanes and and small-scale emerging dipoles, a process that is know to generate high frequency kink mode MHD waves propagating along the magnetic field lines.
Solar spicules have eluded modelers and observers for decades. Since the discovery of the more energetic type II, spicules have become a heated topic but their contribution to the energy balance of the low solar atmosphere remains unknown. Here we gi ve a first glimpse of what quiet Sun spicules look like when observed with NASAs recently launched Interface Region Imaging Spectrograph (IRIS). Using IRIS spectra and filtergrams that sample the chromosphere and transition region we compare the properties and evolution of spicules as observed in a coordinated campaign with Hinode and the Atmospheric Imaging Assembly. Our IRIS observations allow us to follow the thermal evolution of type II spicules and finally confirm that the fading of Ca II H spicules appears to be caused by rapid heating to higher temperatures. The IRIS spicules do not fade but continue evolving, reaching higher and falling back down after 500-800 s. Ca II H type II spicules are thus the initial stages of violent and hotter events that mostly remain invisible in Ca II H filtergrams. These events have very different properties from type I spicules, which show lower velocities and no fading from chromospheric passbands. The IRIS spectra of spicules show the same signature as their proposed disk counterparts, reinforcing earlier work. Spectroheliograms from spectral rasters also confirm that quiet Sun spicules originate in bushes from the magnetic network. Our results suggest that type II spicules are indeed the site of vigorous heating (to at least transition region temperatures) along extensive parts of the upward moving spicular plasma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا