ﻻ يوجد ملخص باللغة العربية
Many open questions in X-ray astronomy are limited by the relatively small number of objects in uniform optically-identified samples, especially when rare subclasses are considered, or subsets isolated to search for evolution or correlations between wavebands. We describe initial results of a program aimed to ultimately yield 10^4 X-ray source identifications--a sample about an order of magnitude larger than earlier efforts. The technique employs X-ray data from the ROSAT All-Sky Survey (RASS), and optical imaging and spectroscopic followup from the Sloan Digital Sky Survey (SDSS). Optical objects in the SDSS catalogs are automatically cross-correlated with RASS X-ray source positions; then priorities for follow-on SDSS optical spectra of candidate counterparts are automatically assigned using an algorithm based on the known fx/fopt ratios for various classes of X-ray emitters. SDSS parameters for optical morphology, magnitude, colors, plus FIRST radio data, serve as proxies for object class. Initial application of this approach to 1400 deg^2 of sky provides a catalog of 1200 spectroscopically confirmed quasars/AGN that are probable RASS identifications. Most of the IDs are new, and only a few percent of the AGN are likely to be random superpositions. The magnitude and redshift ranges of the counterparts extend over 15<m<21 and 0.03<z<3.6. Although most IDs are quasars and Sy 1s, a variety of other AGN subclasses are also sampled. Substantial numbers of rare AGN are found, including more than 130 narrow-line Seyfert 1s and 45 BL Lac candidates. These results already provide a sizeable set of new IDs, show utility of the sample in multi-waveband studies, and demonstrate the capability of the RASS/SDSS approach to efficiently proceed towards the largest homogeneously selected/observed sample of X-ray emitting AGN. Abridged Abstract
The ROSAT All-Sky Survey (RASS) was the first imaging X-ray survey of the entire sky. While X-ray source counterparts are known to range from distant quasars to nearby M dwarfs, the RASS data alone are often insufficient to determine the nature of an
SPIDERS (SPectroscopic IDentification of eROSITA Sources) is an SDSS-IV survey running in parallel to the eBOSS cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected AGN and galaxy cluster members detected in
Some indications for tension have long been identified between cosmological constraints obtained from galaxy clusters and primary CMB measurements. Typically, assuming the matter density and fluctuations, as parameterized with Omega_m and sigma_8, es
We review some of the scientific opportunities and technical challenges posed by the exploration of the large digital sky surveys, in the context of a Virtual Observatory (VO). The VO paradigm will profoundly change the way observational astronomy is
We describe the algorithm that selects the main sample of galaxies for spectroscopy in the Sloan Digital Sky Survey from the photometric data obtained by the imaging survey. Galaxy photometric properties are measured using the Petrosian magnitude sys