ترغب بنشر مسار تعليمي؟ اضغط هنا

SPIDERS: Selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys

341   0   0.0 ( 0 )
 نشر من قبل Tom Dwelly
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SPIDERS (SPectroscopic IDentification of eROSITA Sources) is an SDSS-IV survey running in parallel to the eBOSS cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected AGN and galaxy cluster members detected in wide area eROSITA, XMM-Newton and ROSAT surveys. We describe the methods used to choose spectroscopic targets for two sub-programmes of SPIDERS: X-ray selected AGN candidates detected in the ROSAT All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian cross-matching algorithm, guided by priors based on mid-IR colour-magnitude information from the WISE survey, to select the most probable optical counterpart to each X-ray detection. We empirically demonstrate the high fidelity of our counterpart selection method using a reference sample of bright well-localised X-ray sources collated from XMM-Newton, Chandra and Swift-XRT serendipitous catalogues, and also by examining blank-sky locations. We describe the down-selection steps which resulted in the final set of SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS survey, and present catalogues of these targets. We also present catalogues of ~12000 ROSAT and ~1500 XMM-Newton Slew survey sources which have existing optical spectroscopy from SDSS-DR12, including the results of our visual inspections. On completion of the SPIDERS program, we expect to have collected homogeneous spectroscopic redshift information over a footprint of ~7500 deg$^2$ for >85 percent of the ROSAT and XMM-Newton Slew survey sources having optical counterparts in the magnitude range 17<r<22.5, producing a large and highly complete sample of bright X-ray-selected AGN suitable for statistical studies of AGN evolution and clustering.



قيم البحث

اقرأ أيضاً

We release the AllWISE counterparts and Gaia matches to 106,573 and 17,665 X-ray sources detected in the ROSAT 2RXS and XMMSL2 surveys with |b|>15. These are the brightest X-ray sources in the sky, but their position uncertainties and the sparse mult i-wavelength coverage until now rendered the identification of their counterparts a demanding task with uncertain results. New all-sky multi-wavelength surveys of sufficient depth, like AllWISE and Gaia, and a new Bayesian statistics based algorithm, NWAY, allow us, for the first time, to provide reliable counterpart associations. NWAY extends previous distance and sky density based association methods and, using one or more priors (e.g., colors, magnitudes), weights the probability that sources from two or more catalogues are simultaneously associated on the basis of their observable characteristics. Here, counterparts have been determined using a WISE color-magnitude prior. A reference sample of 4524 XMM/Chandra and Swift X-ray sources demonstrates a reliability of ~ 94.7% (2RXS) and 97.4% (XMMSL2). Combining our results with Chandra-COSMOS data, we propose a new separation between stars and AGN in the X-ray/WISE flux-magnitude plane, valid over six orders of magnitude. We also release the NWAY code and its user manual. NWAY was extensively tested with XMM-COSMOS data. Using two different sets of priors, we find an agreement of 96% and 99% with published Likelihood Ratio methods. Our results were achieved faster and without any follow-up visual inspection. With the advent of deep and wide area surveys in X-rays (e.g. SRG/eROSITA, Athena/WFI) and radio (ASKAP/EMU, LOFAR, APERTIF, etc.) NWAY will provide a powerful and reliable counterpart identification tool.
We look to provide a detailed description of the SPectroscopic IDentification of ERosita Sources (SPIDERS) survey, an SDSS-IV programme aimed at obtaining spectroscopic classification and redshift measurements for complete samples of sufficiently bri ght X-ray sources. We describe the SPIDERS X-ray Point Source Spectroscopic Catalogue, considering its store of 11,092 observed spectra drawn from a parent sample of 14,759 ROSAT and XMM sources over an area of 5,129 deg$^2$ covered in SDSS-IV by the eBOSS survey. This programme represents the largest systematic spectroscopic observation of an X-ray selected sample. A total of 10,970 (98.9%) of the observed objects are classified and 10,849 (97.8%) have secure redshifts. The majority of the spectra (10,070 objects) are active galactic nuclei (AGN), 522 are cluster galaxies, and 294 are stars. The observed AGN redshift distribution is in good agreement with simulations based on empirical models for AGN activation and duty cycle. Forming composite spectra of type 1 AGN as a function of the mass and accretion rate of their black holes reveals systematic differences in the H-beta emission line profiles. This study paves the way for systematic spectroscopic observations of sources that are potentially to be discovered in the upcoming eROSITA survey over a large section of the sky.
We present the host galaxy molecular gas properties of a sample of 213 nearby (0.01<z< 0.05) hard X-ray selected AGN galaxies, drawn from the 70-month catalog of Swift-BAT, with 200 new CO(2-1) line measurements obtained with the JCMT and APEX telesc opes. We find that AGN in massive galaxies tend to have more molecular gas, and higher gas fractions, than inactive galaxies matched in stellar mass. When matched in star formation, we find AGN galaxies show no difference from inactive galaxies with no evidence of AGN feedback affecting the molecular gas. The higher molecular gas content is related to AGN galaxies hosting a population of gas-rich early types with an order of magnitude more molecular gas and a smaller fraction of quenched, passive galaxies (~5% vs. 49%). The likelihood of a given galaxy hosting an AGN (L_bol>10^44 erg/s) increases by ~10-100 between a molecular gas mass of 10^8.7 Msun and 10^10.2 Msun. Higher Eddington ratio AGN galaxies tend to have higher molecular gas masses and gas fractions. Higher column density AGN galaxies (Log NH>23.4) are associated with lower depletion timescales and may prefer hosts with more gas centrally concentrated in the bulge that may be more prone to quenching than galaxy wide molecular gas. The significant average link of host galaxy molecular gas supply to SMBH growth may naturally lead to the general correlations found between SMBHs and their host galaxies, such as the correlations between SMBH mass and bulge properties and the redshift evolution of star formation and SMBH growth.
Observational investigations of the abundance of massive precursors of local galaxy clusters (proto-clusters) allow us to test the growth of density perturbations, to constrain cosmological parameters that control it, to test the theory of non-linear collapse and how the galaxy formation takes place in dense environments. The Planck collaboration has recently published a catalogue of >~ 2000 cold extra-galactic sub-millimeter sources, i.e. with colours indicative of z >~ 2, almost all of which appear to be over-densities of star-forming galaxies. They are thus considered as proto-cluster candidates. Their number densities (or their flux densities) are far in excess of expectations from the standard scenario for the evolution of large-scale structure. Simulations based on a physically motivated galaxy evolution model show that essentially all cold peaks brighter than S_{545GHz} = 500 mJy found in Planck maps after having removed the Galactic dust emission can be interpreted as positive Poisson fluctuations of the number of high-z dusty proto-clusters within the same Planck beam, rather then being individual clumps of physically bound galaxies. This conclusion does not change if an empirical fit to the luminosity function of dusty galaxies is used instead of the physical model. The simulations accurately reproduce the statistic of the Planck detections and yield distributions of sizes and ellipticities in qualitative agreement with observations. The redshift distribution of the brightest proto-clusters contributing to the cold peaks has a broad maximum at 1.5 <~ z <~ 3. Therefore follow-up of Planck proto-cluster candidates will provide key information on the high-z evolution of large scale structure.
We explored the AllWISE catalogue of the Wide-field Infrared Survey Explorer mission and identified Young Stellar Object candidates. Reliable 2MASS and WISE photometric data combined with Planck dust opacity values were used to build our dataset and to find the best classification scheme. A sophisticated statistical method, the Support Vector Machine (SVM) is used to analyse the multi-dimensional data space and to remove source types identified as contaminants (extragalactic sources, main sequence stars, evolved stars and sources related to the interstellar medium). Objects listed in the SIMBAD database are used to identify the already known sources and to train our method. A new all-sky selection of 133,980 Class I/II YSO candidates is presented. The estimated contamination was found to be well below 1% based on comparison with our SIMBAD training set. We also compare our results to that of existing methods and catalogues. The SVM selection process successfully identified >90% of the Class I/II YSOs based on comparison with photometric and spectroscopic YSO catalogues. Our conclusion is that by using the SVM, our classification is able to identify more known YSOs of the training sample than other methods based on colour-colour and magnitude-colour selection. The distribution of the YSO candidates well correlates with that of the Planck Galactic Cold Clumps in the Taurus--Auriga--Perseus--California region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا