ﻻ يوجد ملخص باللغة العربية
We present preliminary results of stellar structure and nucleosynthesis calculations for some early stars. The study (still in progress) seeks to explore the expected chemical signatures of second generation low- and intermediate-mass stars that may have formed out of a combination of Big Bang and Pop III (Z=0) supernovae material. Although the study is incomplete at this stage, we find some important features in our models. The initial chemical composition of these early stars is found to be significantly different to that given by just scaling the solar composition. The most notable difference is the lack of nitrogen. This should not affect the structural evolution significantly as nitrogen will be quickly produced through the CNO cycle due to the presence of carbon (and oxygen). It should however effect the nucleosynthetic yields. We also find that our very low metallicity five solar-mass model, with [Fe/H]=-4.01, does not reach the RGB - it goes directly to the helium burning phase. It does not experience the first dredge-up either. This is not a new finding but it will have an effect on the surface chemical evolution of the stars and should alter the nucleosynthetic yields that we are currently calculating. Our higher metallicity stars, with a globular cluster composition at [Fe/H]= -1.40, do experience all the standard phases of evolution but also have significantly higher surface temperatures and luminosities compared to solar metallicity stars. Their internal temperatures are also higher which should again effect the final nucleosynthetic yields.
The first massive stars triggered the onset of chemical evolution by releasing the first metals (elements heavier than helium) in the Universe. The nature of these stars and how the early chemical enrichment took place is still largely unknown. Rotat
Recent observations of r-process-enriched metal-poor star abundances reveal a non-uniform abundance pattern for elements $Zleq47$. Based on non-correlation trends between elemental abundances as a function of Eu-richness in a large sample of metal-po
The first metal enrichment in the universe was made by supernova (SN) explosions of population (Pop) III stars. The trace remains in abundance patterns of extremely metal-poor (EMP) stars. We investigate the properties of nucleosynthesis in Pop III S
We examine nucleosynthesis in the electron capture supernovae of progenitor AGB stars with an O-Ne-Mg core (with the initial stellar mass of 8.8 M_odot). Thermodynamic trajectories for the first 810 ms after core bounce are taken from a recent state-
We present the first evolutionary models of intermediate mass stars up to their thermal pulses which include effects of rotation on the stellar structure as well as rotationally induced mixing of chemical species and angular momentum. We find a signi