ﻻ يوجد ملخص باللغة العربية
Recent observations of r-process-enriched metal-poor star abundances reveal a non-uniform abundance pattern for elements $Zleq47$. Based on non-correlation trends between elemental abundances as a function of Eu-richness in a large sample of metal-poor stars, it is shown that the mixing of a consistent and robust light element primary process (LEPP) and the r-process pattern found in r-II metal-poor stars explains such apparent non-uniformity. Furthermore, we derive the abundance pattern of the LEPP from observation and show that it is consistent with a missing component in the solar abundances when using a recent s-process model. As the astrophysical site of the LEPP is not known, we explore the possibility of a neutron capture process within a site-independent approach. It is suggested that scenarios with neutron densities $n_{n}leq10^{13}$ $cm^{-3}$ or in the range $n_{n}geq10^{24}$ $cm^{-3}$ best explain the observations.
We present preliminary results of stellar structure and nucleosynthesis calculations for some early stars. The study (still in progress) seeks to explore the expected chemical signatures of second generation low- and intermediate-mass stars that may
The first metal enrichment in the universe was made by supernova (SN) explosions of population (Pop) III stars. The trace remains in abundance patterns of extremely metal-poor (EMP) stars. We investigate the properties of nucleosynthesis in Pop III S
We examine the Pb and Th abundances in 27 metal-poor stars (-3.1 < [Fe/H] < -1.4) whose very heavy metal (Z > 56) enrichment was produced only by the rapid (r-) nucleosynthesis process. New abundances are derived from HST/STIS, Keck/HIRES, and VLT/UV
Measurement and astrophysical interpretation of characteristic gamma-ray lines from nucleosynthesis was one of the prominent science goals of the INTEGRAL mission and in particular its spectrometer SPI. Emission from 26Al and from 60Fe decay lines or
We perform calculations of dark photon production and decay in the early universe for ranges of dark photon masses and vacuum coupling with standard model photons. Simultaneously and self-consistently with dark photon production and decay, our calcul