ترغب بنشر مسار تعليمي؟ اضغط هنا

A 2MASS All-Sky View of the Sagittarius Dwarf Galaxy: I. Morphology of the Sagittarius Core and Tidal Arms

95   0   0.0 ( 0 )
 نشر من قبل Steven R. Majewski
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first all-sky view of the Sagittarius (Sgr) dwarf galaxy mapped by M giant star tracers detected in the complete Two Micron All-Sky Survey (2MASS). The main body is fit with a King profile of 30 deg limiting radius, but with a break in the density profile from stars in tidal tails. We argue that much of the observed structure beyond the 224 core radius may be unbound as the satellite undergoes catastrophic disruption. A striking, >150 deg trailing tidal tail extends from the Sgr center and arcs across the South Galactic Hemisphere. A prominent leading debris arm extends from the Sgr center northward of the Galactic plane to an ~40 kpc apoGalacticon, loops towards the North Galactic Cap (NGC) and descends back towards the Galactic plane, foreshortened and covering the NGC. The Sgr tails lie along a well-defined orbital plane that shows little precession, which supports the notion of a nearly spherical Galactic potential. The Sun lies near the path of leading Sgr debris; thus, former Sgr stars may be near or in the solar neighborhood. The number of M giants in the Sgr tails is >15% that within the King limiting radius of the Sgr center. That several gigayear old M giants are so widespread along the Sgr tidal arms not only places limits on the dynamical age of these arms but poses a timing problem that bears on the recent binding energy of the Sgr core and that is naturally explained by recent and catastrophic mass loss. Sgr appears to contribute >75% of the high latitude, halo M giants; no evidence for M giant tidal debris from the Magellanic Clouds is found. Generally good correspondence is found between the M giant, all-sky map of the Sgr system and all previously published detections of potential Sgr debris with the exception of Sgr carbon stars -- which must be subluminous to resolve the discrepancy.



قيم البحث

اقرأ أيضاً

We have assembled a large-area spectroscopic survey of giant stars in the Sagittarius (Sgr) dwarf galaxy core. Using medium resolution (R ~15,000), multifiber spectroscopy we have measured velocities of these stars, which extend up to 12 degrees from the galaxys center (3.7 core radii or 0.4 times the King limiting radius). From these high quality spectra we identify 1310 Sgr members out of 2296 stars surveyed distributed across 24 different fields across the Sgr core. Additional slit spectra were obtained of stars bridging from the Sgr core to its trailing tail. Our systematic, large area sample shows no evidence for significant rotation, a result at odds with the ~20 km/s rotation required as an explanation for the bifurcation seen in the Sgr tidal stream; the observed small (<= 4 km/s) velocity trend along primarily the major axis is consistent with models of the projected motion of an extended body on the sky with no need for intrinsic rotation. The Sgr core is found to have a flat velocity dispersion (except for a kinematically colder center point) across its surveyed extent and into its tidal tails, a property that matches the velocity dispersion profiles measured for other Milky Way dwarf spheroidal (dSph) galaxies. We comment on the possible significance of this observed kinematical similarity for the dynamical state of the other classical Milky Way dSphs in light of the fact that Sgr is clearly a strongly tidally disrupted system.
M giants selected from the Two Micron All Sky Survey (2MASS) have been used to trace streams of tidal debris apparently associated with the Sagittarius dwarf spheroidal galaxy (Sgr) that entirely encircle the Galaxy. While the Sgr M giants are genera lly aligned with a single great circle on the sky, we measure a difference of 10.4 +- 2.6 degrees between the mean orbital poles of the great circles that best fit debris leading and trailing Sgr, which can be attributed to the precession of Sgrs orbit over the range of phases explored by the data set. Simulations of the destruction of Sgr in potentials containing bulge, disk and halo components best reproduce this level of precession along the same range of orbital phases if the potential contours of the halo are only slightly flattened, with the ratio between the axis length perpendicular to and in the disk in the range q = 0.90-0.95 (corresponding to isodensity contours with q_rho ~ 0.83 - 0.92). Oblate halos are strongly preferred over prolate (q_rho > 1) halos, and flattenings in the potential of q <= 0.85 (q_rho <= 0.75) and q >= 1.05 (q_rho >= 1.1) are ruled out at the 3-sigma level. More extreme values of q <= 0.80 (q_rho <= 0.6) and q >= 1.25 (q_rho >= 1.6) are ruled out at the 7-sigma and 5-sigma levels respectively. These constraints will improve as debris with larger separation in orbital phase can be found.
We measure the spatial density of F turnoff stars in the Sagittarius dwarf tidal stream, from Sloan Digital Sky Survey (SDSS) data, using statistical photometric parallax. We find a set of continuous, consistent parameters that describe the leading S gr streams position, direction, and width for 15 stripes in the North Galactic Cap, and 3 stripes in the South Galactic Cap. We produce a catalog of stars that has the density characteristics of the dominant leading Sgr tidal stream that can be compared with simulations. We find that the width of the leading (North) tidal tail is consistent with recent triaxial and axisymmetric halo model simulations. The density along the stream is roughly consistent common disruption models in the North, but possibly not in the South. We explore the possibility that one or more of the dominant Sgr streams has been mis-identified, and that one or more of the `bifurcated pieces is the real Sgr tidal tail, but we do not reach definite conclusions. If two dwarf progenitors are assumed, fits to the planes of the dominant and `bifurcated tidal tails favor an association of the Sgr dwarf spheroidal galaxy with the dominant Southern stream and the `bifurcated stream in the North. In the North Galactic Cap, the best fit Hernquist density profile for the smooth component of the stellar halo is oblate, with a flattening parameter q = 0.53, and a scale length of r_0 = 6.73. The Southern data for both the tidal debris and the smooth component of the stellar halo do not match the model fits to the North, although the stellar halo is still overwhelmingly oblate. Finally, we verify that we can reproduce the parameter fits on the asynchronous Milkyway@home volunteer computing platform.
67 - L. Sbordone 2020
We report on the discovery and chemical abundance analysis of the first CEMP-r/s star detected in the Sagittarius dwarf Spheroidal Galaxy, by means of UVES high resolution spectra. The star, found in the outskirts of Sgr dSph, along the main body maj or axis, is a moderately metal poor giant (T$_{eff}$=4753 K, log g=1.75, [Fe/H]=-1.55), with [C/Fe]=1.13 placing it in the so-called high-carbon band, and strong s-process and r-process enrichment ([Ba/Fe]=1.4, [Eu/Fe]=1.01). Abundances of 29 elements from C to Dy were obtained. The chemical pattern appears to be best fitted by a scenario where an r-process pollution event pre-enriched the material out of which the star was born as secondary in a binary system whose primary evolved through the AGB phase, providing C and s-process enrichment.
What is the mass of the progenitor of the Sagittarius (Sgr) dwarf galaxy? Here, we reassemble the stellar debris using SDSS and 2MASS data to find the total luminosity and likely mass. We find that the luminosity is in the range 9.6-13.2 x10^7 solar luminosities or M_V ~ -15.1 - 15.5, with 70% of the light residing in the debris streams. The progenitor is somewhat fainter than the present-day Small Magellanic Cloud, and comparable in brightness to the M31 dwarf spheroidals NGC 147 and NGC 185. Using cosmologically motivated models, we estimate that the mass of Sgrs dark matter halo prior to tidal disruption was ~10^10 solar masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا