ترغب بنشر مسار تعليمي؟ اضغط هنا

Re-Assembling the Sagittarius Dwarf Galaxy

146   0   0.0 ( 0 )
 نشر من قبل Martin Niederste-Ostholt Mr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

What is the mass of the progenitor of the Sagittarius (Sgr) dwarf galaxy? Here, we reassemble the stellar debris using SDSS and 2MASS data to find the total luminosity and likely mass. We find that the luminosity is in the range 9.6-13.2 x10^7 solar luminosities or M_V ~ -15.1 - 15.5, with 70% of the light residing in the debris streams. The progenitor is somewhat fainter than the present-day Small Magellanic Cloud, and comparable in brightness to the M31 dwarf spheroidals NGC 147 and NGC 185. Using cosmologically motivated models, we estimate that the mass of Sgrs dark matter halo prior to tidal disruption was ~10^10 solar masses.



قيم البحث

اقرأ أيضاً

We present spectroscopic observations from the {it Spitzer Space Telescope} of six carbon-rich AGB stars in the Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph) and two foreground Galactic carbon stars. The band strengths of the observed C$_2$H$_2$ and SiC features are very similar to those observed in Galactic AGB stars. The metallicities are estimated from an empirical relation between the acetylene optical depth and the strength of the SiC feature. The metallicities are higher than those of the LMC, and close to Galactic values. While the high metallicity could imply an age of around 1 Gyr, for the dusty AGB stars, the pulsation periods suggest ages in excess of 2 or 3 Gyr. We fit the spectra of the observed stars using the DUSTY radiative transfer model and determine their dust mass-loss rates to be in the range 1.0--3.3$times 10^{-8} $M$_{odot}$yr$^{-1}$. The two Galactic foreground carbon-rich AGB stars are located at the far side of the solar circle, beyond the Galactic Centre. One of these two stars show the strongest SiC feature in our present Local Group sample.
We have assembled a large-area spectroscopic survey of giant stars in the Sagittarius (Sgr) dwarf galaxy core. Using medium resolution (R ~15,000), multifiber spectroscopy we have measured velocities of these stars, which extend up to 12 degrees from the galaxys center (3.7 core radii or 0.4 times the King limiting radius). From these high quality spectra we identify 1310 Sgr members out of 2296 stars surveyed distributed across 24 different fields across the Sgr core. Additional slit spectra were obtained of stars bridging from the Sgr core to its trailing tail. Our systematic, large area sample shows no evidence for significant rotation, a result at odds with the ~20 km/s rotation required as an explanation for the bifurcation seen in the Sgr tidal stream; the observed small (<= 4 km/s) velocity trend along primarily the major axis is consistent with models of the projected motion of an extended body on the sky with no need for intrinsic rotation. The Sgr core is found to have a flat velocity dispersion (except for a kinematically colder center point) across its surveyed extent and into its tidal tails, a property that matches the velocity dispersion profiles measured for other Milky Way dwarf spheroidal (dSph) galaxies. We comment on the possible significance of this observed kinematical similarity for the dynamical state of the other classical Milky Way dSphs in light of the fact that Sgr is clearly a strongly tidally disrupted system.
We measure the spatial density of F turnoff stars in the Sagittarius dwarf tidal stream, from Sloan Digital Sky Survey (SDSS) data, using statistical photometric parallax. We find a set of continuous, consistent parameters that describe the leading S gr streams position, direction, and width for 15 stripes in the North Galactic Cap, and 3 stripes in the South Galactic Cap. We produce a catalog of stars that has the density characteristics of the dominant leading Sgr tidal stream that can be compared with simulations. We find that the width of the leading (North) tidal tail is consistent with recent triaxial and axisymmetric halo model simulations. The density along the stream is roughly consistent common disruption models in the North, but possibly not in the South. We explore the possibility that one or more of the dominant Sgr streams has been mis-identified, and that one or more of the `bifurcated pieces is the real Sgr tidal tail, but we do not reach definite conclusions. If two dwarf progenitors are assumed, fits to the planes of the dominant and `bifurcated tidal tails favor an association of the Sgr dwarf spheroidal galaxy with the dominant Southern stream and the `bifurcated stream in the North. In the North Galactic Cap, the best fit Hernquist density profile for the smooth component of the stellar halo is oblate, with a flattening parameter q = 0.53, and a scale length of r_0 = 6.73. The Southern data for both the tidal debris and the smooth component of the stellar halo do not match the model fits to the North, although the stellar halo is still overwhelmingly oblate. Finally, we verify that we can reproduce the parameter fits on the asynchronous Milkyway@home volunteer computing platform.
153 - Anirudh Chiti , Anna Frebel 2019
We present the metallicities and carbon abundances of four newly discovered metal-poor stars with $ -2.2 <$ [Fe/H] $< -1.6$ in the Sagittarius dwarf spheroidal galaxy. These stars were selected as metal-poor member candidates using a combination of p ublic photometry from the SkyMapper Southern Sky Survey and proper motion data from the second data release from the Gaia mission. The SkyMapper filters include a metallicity-sensitive narrow-band $v$ filter centered on the Ca II K line, which we use to identify metal-poor candidates. In tandem, we use proper motion data to remove metal-poor stars that are not velocity members of the Sagittarius dwarf spheroidal galaxy. We find that these two datasets allow for efficient identification of metal-poor members of the Sagittarius dwarf galaxy to follow-up with further spectroscopic study. Two of the stars we present have [Fe/H] $< -2.0$, which adds to the few other such stars currently identified in the Sagittarius dwarf galaxy that are likely not associated with the globular cluster M54, which resides in the nucleus of the system. Our results confirm that there exists a very metal-poor stellar population in the Sagittarius dwarf galaxy. We find that none of our stars can be classified as carbon-enhanced metal-poor stars. Efficiently identifying members of this population will be helpful to further our understanding of the early chemical evolution of the system.
Context. Globular clusters (GCs) are witnesses of the past accretion events onto the Milky Way (MW). In particular, the GCs of the Sagittarius (Sgr) dwarf galaxy are important probes of an on-going merger. Aims. Our main goal is to search for new GC members of this dwarf galaxy using the VISTA Variables in the Via Lactea Extended Survey (VVVX) near-infrared database combined with the Gaia Early Data Release 3 (EDR3) optical database. Methods. We investigated all VVVX-enabled discoveries of GC candidates in a region covering about 180 sq. deg. toward the bulge and the Sgr dwarf galaxy. We used multiband point-spread function photometry to obtain deep color-magnitude diagrams (CMDs) and luminosity functions (LFs) for all GC candidates, complemented by accurate Gaia-EDR3 proper motions (PMs) to select Sgr members and variability information to select RR Lyrae which are potential GC members. Results. After applying a strict PM cut to discard foreground bulge and disk stars, the CMDs and LFs for some of the GC candidates exhibit well defined red giant branches and red clump giant star peaks. We selected the best Sgr GCs, estimating their distances, reddenings, and associated RR Lyrae. Conclusions. We discover 12 new Sgr GC members, more than doubling the number of GCs known in this dwarf galaxy. In addition, there are 11 other GC candidates identified that are uncertain, awaiting better data for confirmation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا