ترغب بنشر مسار تعليمي؟ اضغط هنا

The sigma Orionis substellar population

105   0   0.0 ( 0 )
 نشر من قبل David Barrado y Navascues
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

VLT/FORS spectroscopy and 2MASS near-infrared photometry, together with previously known data, have been used to establish the membership and the properties of a sample of low-mass candidate members of the sigma Orionis cluster with masses spanning from 1 Msun down to about 0.013 Msun (i.e., deuterium-burning mass limit). We have observed K-band infrared excess and remarkably intense H(alpha) emission in various cluster members, which, in addition to the previously detected forbidden emision lines and the presence of LiI in absorption at 6708 A, have allowed us to tentatively classify sigma Orionis members as classical or weak-line TTauri stars and substellar analogs. Variability of the H(alpha) line has been investigated and detected in some objects. Based on the K-band infrared excesses and the intensity of H(alpha) emission, we estimate that the minimum disk frequency of the sigma Orionis low-mass population is in the range 5-12%.



قيم البحث

اقرأ أيضاً

We present a deep I,Z photometric survey covering a total area of 1.12 deg^{2} of the Sigma Orionis cluster (Icompl=22 and Zcompl=21.5mag). From I, I-Z color-magnitude diagrams we have selected 153 candidates that fit the previously known sequence of the cluster. Using J-band photometry, we find that 124 of the 151 candidates follow the previously known infrared photometric sequence of the cluster and are probably members. We have studied the spatial distribution of these candidates and found that there are objects located at distances greater than 30 arcmin to the north and west of Sigma Orionis that probably belong to different populations of the Orions Belt. For the 102 bona fide Sigma Orionis cluster member candidates, we find that the radial surface density can be represented by a decreasing exponential function (sigma = sigma_0 e^{-r/r_0}) with a central density of sigma_0=0.23+/-0.03 object/arcmin^{2} and a characteristic radius of r_0=9.5+/-0.7 arcmin. From a statistical comparison with Monte Carlo simulations, we conclude that the spatial distribution of the cluster member candidates is compatible with a Poissonian distribution and, hence, they are not mainly forming aggregations or sub-clustering. Using near-infrared JHK-band data from 2MASS and UKIDSS and mid-infrared data from IRAC/Spitzer, we find that 5-9 % of the brown dwarf candidates in the Sigma Orionis cluster have K-band excesses and 31+/-7 % of them show mid-infrared excesses at wavelengths longer than 5.8 microns, which are probably related to the presence of disks. We have also calculated the initial mass spectrum (dN/dm) of Sigma Orionis from very low mass stars (0.10 Msol) to the deuterium-burning mass limit (0.012-0.013 Msol). This is a rising function toward lower masses and can be represented by a power-law distribution (dN/dm = m^{-alpha}) with an exponent alpha of 0.7+/-0.3 for an age of 3 Myr.
By collecting optical and infrared photometry and low resolution spectroscopy, we have identified a large number of low mass stars and brown dwarf candidates belonging to the young cluster (~5 Myr) associated with the binary star lambda Orionis. The lowest mass object found is a M8.5 with an estimated mass of 0.02 Msun (~0.01 Msun for objects without spectroscopic confirmation). For those objects with spectroscopy, the measured strength of the Halpha emission line follows a distribution similar to other clusters with the same age range, with larger equivalent widths for cooler spectral types. Three of the brown dwarfs have Halpha emission equivalent widths of order 100 AA, suggestive that they may have accretion disks and thus are the substellar equivalent of Classical T Tauri stars. We have derived the Initial Mass Function for the cluster. For the substellar regime, the index of the mass spectrum is alpha=0.60$+-0.06, very similar to other young associations.
We present the first results on variability of very low mass stars and brown dwarfs belonging to the 5 Myr Lambda Orionis cluster (Collinder 69). We have monitored almost continuously in the J filter a small area of the cluster which includes 12 poss ible members of the cluster during one night. Some members have turned to be short-term variable. One of them, LOri167, has a mass close to the planetary mass limit and its variability might be due to instabilities produced by the deuterium burning, although other mechanism cannot be ruled out.
In spite of its importance for the study of star formation at all mass domains, the nearby young sigma Orionis cluster still lacks a comprehensive survey for multiplicity. We try to fill that observational gap by looking for wide resolved binaries wi th angular separations between 0.4 and 4.0 arcsec. We search for companions to 331 catalogued cluster stellar members and candidates in public K-band UKIDSS images outside the innermost 1 arcmin, which is affected by the glare of the bright, eponymous sigma Ori multiple system, and investigate their cluster membership with colour-magnitude diagrams and previous knowledge of youth features. Of the 18 identified pairs, ten have very low individual probabilities of chance alignment (< 1 %) and are considered here as physical pairs. Four of them are new, while the other six had been discovered previously, but never investigated homogeneously and in detail. Projected physical separations and magnitude differences of the ten probably bound pairs range from 180 to 1220 au, and from 0.0 to 3.4 mag in K, respectively. Besides, we identify two cluster stars with elongated point spread functions. We determine the minimum frequency of wide multiplicity in the interval of projected physical separations s = 160-1600 au in sigma Orionis at 3.0^{+1.2}_{-1.1} %. We discover a new Lindroos system, find that massive and X-ray stars tend to be in pairs or trios, conclude that multiplicity truncates circumstellar discs and enhances X-ray emission, and ascribe a reported lithium depletion in a young star to unresolved binarity in spectra of moderate resolution. When accounting for all know multiples, including spectroscopic binaries, the minimum frequency of multiplicity increases to about 10 %, which implies that of the order of 80-100 unknown multiple systems still await discovery in sigma Orionis.
We have performed a census of disks around brown dwarfs in the Sigma Ori cluster using all available images from IRAC onboard the Spitzer Space Telescope. To search for new low-mass cluster members with disks, we have measured photometry for all sour ces in the Spitzer images and have identified the ones that have red colors that are indicative of disks. We present 5 promising candidates, which may consist of 2 brown dwarfs, 2 stars with edge-on disks, and a low-mass protostar if they are bona fide members. Spectroscopy is needed to verify the nature of these sources. We have also used the Spitzer data to determine which of the previously known probable members of Sigma Ori are likely to have disks. By doing so, we measure disk fractions of ~40% and ~60% for low-mass stars and brown dwarfs, respectively. These results are similar to previous estimates of disk fractions in IC 348 and Cha I, which have roughly the same median ages as Sigma Ori (3 Myr). Finally, we note that our photometric measurements and the sources that we identify as having disks differ significantly from those of other recent studies that analyzed the same Spitzer images. For instance, previous work has suggested that the T dwarf S Ori 70 is redder than typical field dwarfs, which has been cited as possible evidence of youth and cluster membership. However, we find that this object is only slightly redder than the reddest field dwarfs in [3.6]-[4.5] (1.56+/-0.07 vs. 0.93-1.46). We measure a larger excess in [3.6]-[5.8] (1.75+/-0.21 vs. 0.87-1.19), but the flux at 5.8um may be overestimated because of the low signal-to-noise ratio of the detection. Thus, the Spitzer data do not offer strong evidence of youth and membership for this object, which is the faintest and coolest candidate member of Sigma Ori that has been identified to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا