ﻻ يوجد ملخص باللغة العربية
We present a deep I,Z photometric survey covering a total area of 1.12 deg^{2} of the Sigma Orionis cluster (Icompl=22 and Zcompl=21.5mag). From I, I-Z color-magnitude diagrams we have selected 153 candidates that fit the previously known sequence of the cluster. Using J-band photometry, we find that 124 of the 151 candidates follow the previously known infrared photometric sequence of the cluster and are probably members. We have studied the spatial distribution of these candidates and found that there are objects located at distances greater than 30 arcmin to the north and west of Sigma Orionis that probably belong to different populations of the Orions Belt. For the 102 bona fide Sigma Orionis cluster member candidates, we find that the radial surface density can be represented by a decreasing exponential function (sigma = sigma_0 e^{-r/r_0}) with a central density of sigma_0=0.23+/-0.03 object/arcmin^{2} and a characteristic radius of r_0=9.5+/-0.7 arcmin. From a statistical comparison with Monte Carlo simulations, we conclude that the spatial distribution of the cluster member candidates is compatible with a Poissonian distribution and, hence, they are not mainly forming aggregations or sub-clustering. Using near-infrared JHK-band data from 2MASS and UKIDSS and mid-infrared data from IRAC/Spitzer, we find that 5-9 % of the brown dwarf candidates in the Sigma Orionis cluster have K-band excesses and 31+/-7 % of them show mid-infrared excesses at wavelengths longer than 5.8 microns, which are probably related to the presence of disks. We have also calculated the initial mass spectrum (dN/dm) of Sigma Orionis from very low mass stars (0.10 Msol) to the deuterium-burning mass limit (0.012-0.013 Msol). This is a rising function toward lower masses and can be represented by a power-law distribution (dN/dm = m^{-alpha}) with an exponent alpha of 0.7+/-0.3 for an age of 3 Myr.
VLT/FORS spectroscopy and 2MASS near-infrared photometry, together with previously known data, have been used to establish the membership and the properties of a sample of low-mass candidate members of the sigma Orionis cluster with masses spanning f
In spite of its importance for the study of star formation at all mass domains, the nearby young sigma Orionis cluster still lacks a comprehensive survey for multiplicity. We try to fill that observational gap by looking for wide resolved binaries wi
By collecting optical and infrared photometry and low resolution spectroscopy, we have identified a large number of low mass stars and brown dwarf candidates belonging to the young cluster (~5 Myr) associated with the binary star lambda Orionis. The
The $sigma$ Orionis cluster is important for studying protoplanetary disk evolution, as its intermediate age ($sim$3-5 Myr) is comparable to the median disk lifetime. We use ALMA to conduct a high-sensitivity survey of dust and gas in 92 protoplaneta
We present the results from a large 850 micron survey of the sigma Orionis cluster using the SCUBA-2 camera on the James Clerk Maxwell Telescope. The 0.5-degree diameter circular region we surveyed contains 297 young stellar objects with an age estim