ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended photoionization and photodissociation in Sgr B2

68   0   0.0 ( 0 )
 نشر من قبل Nemesio Rodriguez-Fernandez
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present large scale 9 x 27 (25 pc x 70 pc) far-IR observations of the Sgr B2 complex using the spectrometers on board the Infrared Space Observatory (ISO). The far-IR spectra are dominated by the strong continuum emission of dust and by the fine structure lines of high excitation potential ions (NII, NIII and OIII) and those of neutral or weakly ionized atoms (OI and CII). The line emission has revealed a very extended component of ionized gas. The study of the NIII 57 microns/NII 122 microns and OIII 52/88 microns line intensity ratios show that the ionized gas has a density of n_e~10^{2-3} cm^-3 while the ionizing radiation can be characterized by a diluted but hard continuum, with effective temperatures of ~35000 K. Photoionization models show that the total number of Lyman photons needed to explain such an extended component is approximately equal to that of the HII regions in Sgr B2(N) and (M) condensations. We propose that the inhomogeneous and clumpy structure of the cloud allows the radiation to reach large distances through the envelope. Therefore, photodissociation regions (PDRs) can be numerous at the interface of the ionized and the neutral gas. The analysis of the OI (63 and 145 microns) and CII (158 microns) lines indicates an incident far-UV field (G_0, in units of the local interstellar radiation field) of 10^{3-4} and a H density of 10^{3-4} cm^{-3} in such PDRs. We conclude that extended photoionization and photodissociation are also taking place in Sgr B2 in addition to more established phenomena such as widespread low--velocity shocks.



قيم البحث

اقرأ أيضاً

Observations of H$_{2}$CO lines and continuum at 1.3 mm towards Sgr B2(N) and Sgr B2(M) cores were carried out with the SMA. We imaged H$_{2}$CO line absorption against the continuum cores and the surrounding line emission clumps. The results show th at the majority of the dense gas is falling into the major cores where massive stars have been formed. The filaments and clumps of the continuum and gas are detected outside of Sgr B2(N) and Sgr B2(M) cores. Both the spectra and moment analysis show the presence of outflows from Sgr B2(M) cores. The H$_{2}$CO gas in the red-shifted outflow of Sgr B2(M) appears to be excited by a non-LTE process which might be related to the shocks in the outflow.
Observations of two H$_2$CO ($3_{03}-2_{02}$ and $3_{21}-2_{20}$) lines and continuum emission at 1.3 mm towards Sgr B2(N) and Sgr B2(M) have been carried out with the SMA. The mosaic maps of Sgr B2(N) and Sgr B2(M) in both continuum and lines show a complex distribution of dust and molecular gas in both clumps and filaments surrounding the compact star formation cores. We have observed a decelerating outflow originated from the Sgr B2(M) core, showing that both the red-shifted and blue-shifted outflow components have a common terminal velocity. This terminal velocity is 58$pm$2 km s$^{-1}$. It provides an excellent method in determination of the systematic velocity of the molecular cloud. The SMA observations have also shown that a large fraction of absorption against the two continuum cores is red-shifted with respect to the systematic velocities of Sgr B2(N) and Sgr B2(M), respectively, suggesting that the majority of the dense molecular gas is flowing into the two major cores where massive stars have been formed. We have solved the radiative transfer in a multi-level system with LVG approximation. The observed H$_2$CO line intensities and their ratios can be adequately fitted with this model for the most of the gas components. However, the line intensities between the higher energy level transition H$_2$CO ($3_{21}-2_{20}$) and the lower energy level transition H$_2$CO ($3_{03}-2_{02}$) is reversed in the red-shifted outflow region of Sgr B2(M), suggesting the presence of inversion in population between the ground levels in the two K ladders (K$_{-1}$= 0 and 2). The possibility of weak maser processes for the H$_2$CO emission in Sgr B2(M) is discussed.
Pety et al. (2012) recently reported the detection of several transitions of an unknown carrier in the Horsehead PDR and attribute them to l-C3H+. Here, we have tested the predictive power of their fit by searching for, and identifying, the previousl y unobserved J=1-0 and J=2-1 transitions of the unknown carrier (B11244) towards Sgr B2(N) in data from the publicly available PRIMOS project. Also presented here are observations of the J=6-5 and J=7-6 transitions towards Sgr B2(N) and Sgr B2(OH) using the Barry E. Turner Legacy Survey and results from the Kaifu et al. (2004) survey of TMC-1. We calculate an excitation temperature and column density of B11244 of ~10 K and ~10^13 cm-2 in Sgr B2(N) and ~79 K with an upper limit of < 1.5 x 10^13 cm-2 in Sgr B2(OH) and find trace evidence for the cations presence in TMC-1. Finally, we present spectra of the neutral species in both Sgr B2(N) and TMC-1, and comment on the robustness of the assignment of the detected signals to l-C3H+.
We have used the Odin submillimetre-wave satellite telescope to observe the ground state transitions of ortho-ammonia and ortho-water, including their 15N, 18O, and 17O isotopologues, towards Sgr B2. The extensive simultaneous velocity coverage of th e observations, >500 km/s, ensures that we can probe the conditions of both the warm, dense gas of the molecular cloud Sgr B2 near the Galactic centre, and the more diffuse gas in the Galactic disk clouds along the line-of-sight. We present ground-state NH3 absorption in seven distinct velocity features along the line-of-sight towards Sgr B2. We find a nearly linear correlation between the column densities of NH3 and CS, and a square-root relation to N2H+. The ammonia abundance in these diffuse Galactic disk clouds is estimated to be about (0.5-1)e-8, similar to that observed for diffuse clouds in the outer Galaxy. On the basis of the detection of H218O absorption in the 3 kpc arm, and the absence of such a feature in the H217O spectrum, we conclude that the water abundance is around 1e-7, compared to ~1e-8 for NH3. The Sgr B2 molecular cloud itself is seen in absorption in NH3, 15NH3, H2O, H218O, and H217O, with emission superimposed on the absorption in the main isotopologues. The non-LTE excitation of NH3 in the environment of Sgr B2 can be explained without invoking an unusually hot (500 K) molecular layer. A hot layer is similarly not required to explain the line profiles of the 1_{1,0}-1_{0,1} transition from H2O and its isotopologues. The relatively weak 15NH3 absorption in the Sgr B2 molecular cloud indicates a high [14N/15N] isotopic ratio >600. The abundance ratio of H218O and H217O is found to be relatively low, 2.5--3. These results together indicate that the dominant nucleosynthesis process in the Galactic centre is CNO hydrogen burning.
The giant molecular cloud Sagittarius B2 (hereafter SgrB2) is the most massive region with ongoing high-mass star formation in the Galaxy. In the southern region of the 40-pc large envelope of SgrB2, we encounter the SgrB2(DS) region which hosts more than 60 high-mass protostellar cores distributed in an arc shape around an extended HII region. We use the Very Large Array in its CnB and D configurations, and in the frequency bands C (4--8 GHz) and X (8--12 GHz) to observe the whole SgrB2 complex. Continuum and radio recombination line maps are obtained. We detect radio continuum emission in SgrB2(DS) in a bubble-shaped structure. From 4 to 12 GHz, we derive a spectral index between -1.2 and -0.4, indicating the presence of non-thermal emission. We decompose the contribution from thermal and non-thermal emission, and find that the thermal component is clumpy and more concentrated, while the non-thermal component is more extended and diffuse. The radio recombination lines in the region are found to be not in local thermodynamic equilibrium (LTE) but stimulated by the non-thermal emission. The thermal free-free emission is likely tracing an HII region ionized by an O7 star, while the non-thermal emission can be generated by relativistic electrons created through first-order Fermi acceleration. We have developed a simple model of the SgrB2(DS) region and found that first-order Fermi acceleration can reproduce the observed flux density and spectral index.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا