ﻻ يوجد ملخص باللغة العربية
We have used the Odin submillimetre-wave satellite telescope to observe the ground state transitions of ortho-ammonia and ortho-water, including their 15N, 18O, and 17O isotopologues, towards Sgr B2. The extensive simultaneous velocity coverage of the observations, >500 km/s, ensures that we can probe the conditions of both the warm, dense gas of the molecular cloud Sgr B2 near the Galactic centre, and the more diffuse gas in the Galactic disk clouds along the line-of-sight. We present ground-state NH3 absorption in seven distinct velocity features along the line-of-sight towards Sgr B2. We find a nearly linear correlation between the column densities of NH3 and CS, and a square-root relation to N2H+. The ammonia abundance in these diffuse Galactic disk clouds is estimated to be about (0.5-1)e-8, similar to that observed for diffuse clouds in the outer Galaxy. On the basis of the detection of H218O absorption in the 3 kpc arm, and the absence of such a feature in the H217O spectrum, we conclude that the water abundance is around 1e-7, compared to ~1e-8 for NH3. The Sgr B2 molecular cloud itself is seen in absorption in NH3, 15NH3, H2O, H218O, and H217O, with emission superimposed on the absorption in the main isotopologues. The non-LTE excitation of NH3 in the environment of Sgr B2 can be explained without invoking an unusually hot (500 K) molecular layer. A hot layer is similarly not required to explain the line profiles of the 1_{1,0}-1_{0,1} transition from H2O and its isotopologues. The relatively weak 15NH3 absorption in the Sgr B2 molecular cloud indicates a high [14N/15N] isotopic ratio >600. The abundance ratio of H218O and H217O is found to be relatively low, 2.5--3. These results together indicate that the dominant nucleosynthesis process in the Galactic centre is CNO hydrogen burning.
Observations of HDO are an important complement for studies of water, because they give strong constraints on the formation processes -- grain surfaces versus energetic process in the gas phase, e.g. in shocks. The HIFI observations of multiple trans
We observed OH, H$_2$O, HN$_3$, C$^{18}$O, and C$_I$ towards the +50 km/s cloud (M-0.02-0.07), the CND and the +20 km/s (M-0.13-0.08) cloud in the Sgr A complex with the VLA, Odin and SEST. Strong OH absorption, H$_2$O emission and absorption lines w
Pety et al. (2012) recently reported the detection of several transitions of an unknown carrier in the Horsehead PDR and attribute them to l-C3H+. Here, we have tested the predictive power of their fit by searching for, and identifying, the previousl
We identify a prominent absorption feature at 1115 GHz, detected in first HIFI spectra towards high-mass star-forming regions, and interpret its astrophysical origin. The characteristic hyperfine pattern of the H2O+ ground-state rotational transition
We present Herschel/HIFI observations of the fundamental rotational transitions of ortho- and para-H$_2^{16}$O and H$_2^{18}$O in absorption towards Sagittarius~B2(M) and W31C. The ortho/para ratio in water in the foreground clouds on the line of sig