ﻻ يوجد ملخص باللغة العربية
Open-shutter RHESSI observations of 3-15 keV X-rays are found to exhibit active region transient brightenings and microflares at a rate of at least 10 per hour occurring even during the periods of lowest solar activity so far in the mission. A thermal component fitted by temperatures of 6-14 MK dominates from 3 keV to about 9 keV, but can be traced up to 14 keV in some cases, and has an average duration of 131(+-103) seconds at 7-8 keV. The duration increases with decreasing photon energy. The peak count rate defined by cross-correlation is delayed at low energies. The temperature peaks early in the event and then decreases, whereas the emission measure increases throughout the event. The properties are consistent with thermal conduction dominating the evolution. In some of the bigger events, a second component was found in the 11-14 keV range extending down to 8 keV in some cases. The duration is typically 3 times shorter and ends near the peak time of the thermal component consistent with the Neupert effect of regular flares. Therefore the second component is suggested to be of non-thermal origin, presumably causing the beam-driven evaporation of the first component. The two components can be separated and analyzed in detail for the first time. Low-keV measurements allow a reliable estimate of the energy input by microflares necessary to assess their relevance for coronal heating.
The electric current helicity density $displaystyle chi=langleepsilon_{ijk}b_ifrac{partial b_k}{partial x_j}rangle$ contains six terms, where $b_i$ are components of the magnetic field. Due to the observational limitations, only four of the above six
Solar flares are explosive releases of magnetic energy. Hard X-ray (HXR) flare emission originates from both hot (millions of Kelvin) plasma and nonthermal accelerated particles, giving insight into flare energy release. The Nuclear Spectroscopic Tel
We discuss the diagnostics available to study the 5-10 MK plasma in the solar corona, which is key to understanding the heating in the cores of solar active regions. We present several simulated spectra, and show that excellent diagnostics are availa
The aim of this paper is to extend our previous study of the solar-cycle variations of the meridional flows and to investigate their latitudinal and longitudinal structure in the subphotospheric layer, especially their variations in magnetic regions.
We use observations of line-of-sight magnetograms from Helioseismic and Magnetic Imager (HMI) on board of Solar Dynamics Observatory (SDO) to investigate polarity separation, magnetic flux, flux emergence rate, twist and tilt of solar emerging active