ﻻ يوجد ملخص باللغة العربية
Solar flares are explosive releases of magnetic energy. Hard X-ray (HXR) flare emission originates from both hot (millions of Kelvin) plasma and nonthermal accelerated particles, giving insight into flare energy release. The Nuclear Spectroscopic Telescope ARray (NuSTAR) utilizes direct focusing optics to attain much higher sensitivity in the HXR range than that of previous indirect imagers. This paper presents eleven NuSTAR microflares from two active regions (AR 12671 on 2017 August 21, and AR 12712 on 2018 May 29). The temporal, spatial, and energetic properties of each are discussed in context with previously published HXR brightenings. They are seen to display several large-flare properties, such as impulsive time profiles and earlier peaktimes in higher energy HXRs. For two events where active region background could be removed, microflare emission did not display spatial complexity: differing NuSTAR energy ranges had equivalent emission centroids. Finally, spectral fitting showed a high energy excess over a single thermal model in all events. This excess was consistent with additional higher-temperature plasma volumes in 10/11 microflares, and consistent only with an accelerated particle distribution in the last. Previous NuSTAR studies focused on one or a few microflares at a time, making this the first to collectively examine a sizable number of events. Additionally, this paper introduces an observed variation in the NuSTAR gain unique to the extremely low-livetime (<1%) regime, and establishes a correction method to be used in future NuSTAR solar spectral analysis.
We present X-ray imaging spectroscopy of one of the weakest active region (AR) microflares ever studied. The microflare occurred at $sim$11:04 UT on 2018 September 9 and we studied it using the Nuclear Spectroscopic Telescope ARray (NuSTAR) and the S
We study flare processes in the lower solar atmosphere using observational data for a M1-class flare of June 12, 2014, obtained by New Solar Telescope (NST/BBSO) and Helioseismic Magnetic Imager (HMI/SDO). The main goal is to understand triggers and
This paper presents an overview of some recent observational and theoretical results on solar flares, with an emphasis on flare impulsive-phase chromospheric properties, including: electron diagnostics, optical and UV emission, and discoveries made b
In this paper, we discuss the temperature distribution and evolution of a microflare, simultaneously observed by Hinode XRT, EIS, and SDO AIA. We find using EIS lines that during peak emission the distribution is nearly isothermal and peaked around 4
We study the nature of energy release and transfer for two sub-A class solar microflares observed during the second flight of the Focusing Optics X-ray Solar Imager (FOXSI-2) sounding rocket experiment on 2014 December 11. FOXSI is the first solar-de