ﻻ يوجد ملخص باللغة العربية
Anisotropy data analysis leaves a significant degeneracy between primeval spectral index (n_s) and cosmic opacity to CMB photons (tau). Low--l polarization measures, in principle, can remove it. We perform a likelihood analysis to see how cosmic variance possibly affects such a problem. We find that, for a sufficiently low noise level (sigma_{pix}) and if tau is not negligibly low, the degeneracy is greatly reduced, while the residual impact of cosmic variance on n_s and tau determinations is under control. On the contrary, if sigma_{pix} is too high, cosmic variance effects appear to be magnified. We apply general results to specific experiments and find that, if favorable conditions occur, it is possible that a 2--sigma detection of a lower limit on tau is provided by the SPOrt experiment. Furthermore, if the PLANCK experiment will measure polarization with the expected precision, the error on low--l harmonics is adequate to determine tau, without significant magnification of the cosmic variance. This however indicates that high sensitivity might be more important than high resolution in tau determinations. We also outline that a determination of tau is critical to perform detailed analyses on the nature of dark energy and/or on the presence of primeval gravitational waves.
The polarization of the Cosmic Microwave Background (CMB)is a powerful observational tool at hand for modern cosmology. It allows to break the degeneracy of fundamental cosmological parameters one cannot obtain using only anisotropy data and provides
We study the problem of searching for cosmic string signal patterns in the present high resolution and high sensitivity observations of the Cosmic Microwave Background (CMB). This article discusses a technique capable of recognizing Kaiser-Stebbins e
POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both prim
We show that the delay of structure formation from WMAP3 can not fully account for the reduction of electron optical depth from WMAP1 to WMAP3 when the radiative transfer effects and feedback mechanisms are took into account in computing the reioniza
Searching for the signal of primordial gravitational waves in the B-modes (BB) power spectrum is one of the key scientific aims of the cosmic microwave background (CMB) polarization experiments. However, this could be easily contaminated by several f