ترغب بنشر مسار تعليمي؟ اضغط هنا

Galactic Synchrotron Foreground and the CMB Polarization Measurements

124   0   0.0 ( 0 )
 نشر من قبل G. Sironi
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The polarization of the Cosmic Microwave Background (CMB)is a powerful observational tool at hand for modern cosmology. It allows to break the degeneracy of fundamental cosmological parameters one cannot obtain using only anisotropy data and provides new insight into conditions existing in the very early Universe. Many experiments are now in progress whose aim is detecting anisotropy and polarization of the CMB. Measurements of the CMB polarization are however hampered by the presence of polarized foregrounds, above all the synchrotron emission of our Galaxy, whose importance increases as frequency decreases and dominates the polarized diffuse radiation at frequencies below $simeq 50$ GHz. In the past the separation of CMB and synchrotron was made combining observations of the same area of sky made at different frequencies. In this paper we show that the statistical properties of the polarized components of the synchrotron and dust foregrounds are different from the statistical properties of the polarized component of the CMB, therefore one can build a statistical estimator which allows to extract the polarized component of the CMB from single frequency data also when the polarized CMB signal is just a fraction of the total polarized signal. This estimator improves the signal/noise ratio for the polarized component of the CMB and reduces from about 50 GHz to about 20 GHz the frequency above which the polarized component of the CMB can be extracted from single frequency maps of the diffuse radiation.



قيم البحث

اقرأ أيضاً

Science opportunities and recommendations concerning optical/infrared polarimetry for the upcoming decade in the field of cosmology. Community-based White Paper to Astro2010 in response to the call for such papers.
The polarization of the Cosmic Microwave Background (CMB)is a powerful observational tool at hand for modern cosmology. It allows to break the degeneracy of fundamental cosmological parameters one cannot obtain using only anisotropy data and provides new insight into conditions existing in the very early Universe. Many experiments are now in progress whose aim is detecting anisotropy and polarization of the CMB. Measurements of the CMB polarization are however hampered by the presence of polarized foregrounds, above all the synchrotron emission of our Galaxy, whose importance increases as frequency decreases and dominates the polarized diffuse radiation at frequencies below about 50 GHz. In the past the separation of CMB and synchrotron was made combining observations of the same area of sky at different frequencies. In this paper we show that the statistical properties of the polarized components of the synchrotron and dust foregrounds are different from the statistical properties of the polarized component of the CMB, therefore one can build a statistical estimator which allows to extract the polarized component of the CMB from single frequency data also when the polarized CMB signal is just a fraction of the total polarized signal. Our estimator improves the signal/noise ratio for the polarized component of the CMB and reduces from about 50 GHz to about 20 GHz the frequency above which the polarized component of the CMB can be extracted from single frequency maps of the diffuse radiation.
122 - E. Carretti 2010
The CMB polarization promises to unveil the dawn of time measuring the gravitational wave background emitted by the Inflation. The CMB signal is faint, however, and easily contaminated by the Galactic foreground emission, accurate measurements of whi ch are thus crucial to make CMB observations successful. We review the CMB polarization properties and the current knowledge on the Galactic synchrotron emission, which dominates the foregrounds budget at low frequency. We then focus on the S-Band Polarization All Sky Survey (S-PASS), a recently completed survey of the entire southern sky designed to investigate the Galactic CMB foreground.
The characterization of the dust polarization foreground to the Cosmic Microwave Background (CMB) is a necessary step towards the detection of the B-mode signal associated with primordial gravitational waves. We present a method to simulate maps of p olarized dust emission on the sphere, similarly to what is done for the CMB anisotropies. This method builds on the understanding of Galactic polarization stemming from the analysis of Planck data. It relates the dust polarization sky to the structure of the Galactic magnetic field and its coupling with interstellar matter and turbulence. The Galactic magnetic field is modelled as a superposition of a mean uniform field and a random component with a power-law power spectrum of exponent $alpha_{rm M}$. The model parameters are constrained to fit the power spectra of dust polarization EE, BB and TE measured using Planck data. We find that the slopes of the E and B power spectra of dust polarization are matched for $alpha_{rm M} = -2.5$. The model allows us to compute multiple realizations of the Stokes Q and U maps for different realizations of the random component of the magnetic field, and to quantify the variance of dust polarization spectra for any given sky area outside of the Galactic plane. The simulations reproduce the scaling relation between the dust polarization power and the mean total dust intensity including the observed dispersion around the mean relation. We also propose a method to carry out multi-frequency simulations including the decorrelation measured recently by Planck, using a given covariance matrix of the polarization maps. These simulations are well suited to optimize component separation methods and to quantify the confidence with which the dust and CMB B-modes can be separated in present and future experiments. We also provide an astrophysical perspective on our modeling of the dust polarization spectra.
We report limits on the Galactic foreground emission contribution to the Background Emission Anisotropy Scanning Telescope (BEAST) Ka- and Q-band CMB anisotropy maps. We estimate the contribution from the cross-correlations between these maps and the foreground emission templates of an H${alpha}$ map, a de-striped version of the Haslam et al. 408 MHz map, and a combined 100 $mu$m IRAS/DIRBE map. Our analysis samples the BEAST $sim10^circ$ declination band into 24 one-hour (RA) wide sectors with $sim7900$ pixels each, where we calculate: (a) the linear correlation coefficient between the anisotropy maps and the templates; (b) the coupling constants between the specific intensity units of the templates and the antenna temperature at the BEAST frequencies and (c) the individual foreground contributions to the BEAST anisotropy maps. The peak sector contributions of the contaminants in the Ka-band are of 56.5% free-free with a coupling constant of $8.3pm0.4$ $mu$K/R, and 67.4% dust with $45.0pm2.0$ $mu$K/(MJy/sr). In the Q-band the corresponding values are of 64.4% free-free with $4.1pm0.2$ $mu$K/R and 67.5% dust with $24.0pm1.0$ $mu$K/(MJy/sr). Using a lower limit of 10% in the relative uncertainty of the coupling constants, we can constrain the sector contributions of each contaminant in both maps to $< 20$% in 21 (free-free), 19 (dust) and 22 (synchrotron) sectors. At this level, all these sectors are found outside of the $mid$b$mid = 14.6^circ$ region. By performing the same correlation analysis as a function of Galactic scale height, we conclude that the region within $b=pm17.5^{circ}$ should be removed from the BEAST maps for CMB studies in order to keep individual Galactic contributions below $sim 1$% of the maps rms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا