ﻻ يوجد ملخص باللغة العربية
This article presents and discusses a method for measuring the proper motions of the Galactic dwarf spheroidal galaxies using images taken with the Hubble Space Telescope. The method involves fitting an effective point spread function to the image of a star or quasi-stellar object to determine its centroid with an accuracy of about 0.005 pixel (0.25 milliarcseconds) -- an accuracy sufficient to measure the proper motion of a dwarf spheroidal galaxy using images separated by just a few years. The data consist of images, dithered to reduce the effects of undersampling, taken at multiple epochs with the Space Telescope Imaging Spectrograph or the Wide Field Planetary Camera. The science fields are in the directions of the Carina, Fornax, Sculptor, and Ursa Minor dwarf spheroidal galaxies and each has at least one quasi-stellar object whose identity has been established by other studies. The rate of change with time of the centroids of the stars of the dwarf spheroidal with respect to the centroid of the quasi-stellar object is the proper motion. Four independent preliminary measurements of the proper motion of Fornax for three fields agree within their uncertainties. The weighted average of these measurements is mu_alpha = 49 +- 13 milliarcseconds/century and mu_delta = -59 +- 13 milliarcseconds/century. The Galactocentric velocity derived from the proper motion implies that Fornax is near perigalacticon, may not be bound to the Milky Way, and is not a member of any of the proposed streams of galaxies and globular clusters in the Galactic halo. If Fornax is bound, the Milky Way must have a mass of at least (1.6 +- 0.8) x 10^{12} solar masses.
The measured proper motion of Fornax, expressed in the equatorial coordinate system, is $(mu_{alpha},mu_{delta})=(47.6pm 4.6,-36.0pm 4.1)$ mas century$^{-1}$. This proper motion is a weighted mean of four independent measurements for three distinct f
This article presents a measurement of the proper motion of the Sculptor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope using the Space Telescope Imaging Spectrograph in the imaging mode.
This article presents a measurement of the proper motion of the Ursa Minor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope in two distinct fields.
We present an F606W-F814W color-magnitude diagram for the Draco dwarf spheroidal galaxy based on Hubble Space Telescope WFPC2 images. The luminosity function is well-sampled to 3 magnitudes below the turn-off. We see no evidence for multiple turnoffs
Kallivayalil et al. have used the textit{Hubble Space Telescope} to measure proper motions of the LMC and SMC using images in 21 and five fields, respectively, all centered on known QSOs. These results are more precise than previous measurements, but