ﻻ يوجد ملخص باللغة العربية
Kallivayalil et al. have used the textit{Hubble Space Telescope} to measure proper motions of the LMC and SMC using images in 21 and five fields, respectively, all centered on known QSOs. These results are more precise than previous measurements, but have surprising and important physical implications: for example, the LMC and SMC may be approaching the Milky Way for the first time; they might not have been in a binary system; and the origin of the Magellanic Stream needs to be re-examined. Motivated by these implications, we have reanalyzed the original data in order to check the validity of these measurements. Our work has produced a proper motion for the LMC that is in excellent agreement with that of Kallivayalil et al., and for the SMC that is in acceptable agreement. We have detected a dependence between the brightness of stars and their mean measured motion in a majority of the fields in both our reduction and that of Kallivayalil et al. Correcting for this systematic error and for the errors caused by the decreasing charge transfer efficiency of the detector produces better agreement between the measurements from different fields. With our improved reduction, we do not need to exclude any fields from the final averages and, for the first time using proper motions, we are able to detect the rotation of the LMC. The best-fit amplitude of the rotation curve at a radius of 275 arcmin in the disk plane is $120 pm 15$ km s$^{-1}$. This value is larger than the 60--70 km s$^{-1}$ derived from the radial velocities of HI and carbon stars, but in agreement with the value of 107 km s$^{-1}$ derived from the radial velocities of red supergiants.
In recent years, with new ground-based and HST measurements of proper motions of the Magellanic Clouds being published, a need of a reanalysis of possible orbital history has arisen. As complementary to other studies, we present a partial examination
We report on the proper motions of Balmer-dominated filaments in Keplers supernova remnant using high resolution images obtained with the Hubble Space Telescope at two epochs separated by about 10 years. We use the improved proper motion measurements
This article presents a measurement of the proper motion of the Sculptor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope using the Space Telescope Imaging Spectrograph in the imaging mode.
The measured proper motion of Fornax, expressed in the equatorial coordinate system, is $(mu_{alpha},mu_{delta})=(47.6pm 4.6,-36.0pm 4.1)$ mas century$^{-1}$. This proper motion is a weighted mean of four independent measurements for three distinct f
This article presents a measurement of the proper motion of the Ursa Minor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope in two distinct fields.