ﻻ يوجد ملخص باللغة العربية
We report new infrared spectroscopic observations of cool DQ white dwarfs by using Coolspec on the 2.7m Harlan-Smith Telescope. DQs have helium-rich atmospheres with traces of molecular carbon thought to be the result of convective dredge-up from their C/O interiors. Recent model calculations predict that oxygen should also be present in DQ atmospheres in detectable amounts. Our synthetic spectra calculations for He-rich white dwarfs with traces of C and O indicate that CO should be easily detected in the cool DQ atmospheres if present in the expected amounts. Determination of the oxygen abundance in the atmosphere will reveal the C/O ratio at the core/envelope boundary, constraining the important and uncertain ^{12}C(alpha,gamma)^{16}O reaction rate.
Dense, He-rich atmospheres of cool white dwarfs represent a challenge to the modeling. This is because these atmospheres are constituted of a dense fluid in which strong multi-atomic interactions determine their physics and chemistry. Therefore, the
We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model we
Recent studies of the atmospheres of carbon-rich (DQ) white dwarfs have demonstrated the existence of two different populations that are distinguished by the temperature range, but more importantly, by the extremely high masses of the hotter group. T
Context: L-type ultra-cool dwarfs and brown dwarfs have cloudy atmospheres that could host weather-like phenomena. The detection of photometric or spectral variability would provide insight into unresolved atmospheric heterogeneities, such as holes i
We report the discovery of a hot DQ white dwarf, NGC 2168:LAWDS 28, that is a likely member of the 150-Myr old cluster NGC 2168 (Messier 35). The spectrum of the white dwarf is dominated by CII features. The effective temperature is difficult to esti