ﻻ يوجد ملخص باللغة العربية
Recent studies of the atmospheres of carbon-rich (DQ) white dwarfs have demonstrated the existence of two different populations that are distinguished by the temperature range, but more importantly, by the extremely high masses of the hotter group. The classical DQ below 10000 K are well understood as the result of dredge-up of carbon by the expanding helium convection zone. The high-mass group poses several problems regarding their origin and also an unexpected correlation of effective temperature with mass. We propose to study the envelopes of these objects to determine the total hydrogen and helium masses as possible clues to their evolution. We developed new codes for envelope integration and diffusive equilibrium that are adapted to the unusual chemical composition, which is not necessarily dominated by hydrogen and helium. Using the new results for the atmospheric parameters, in particular, the masses obtained using Gaia parallaxes, we confirm that the narrow sequence of carbon abundances with Teff in the cool classical DQ is indeed caused by an almost constant helium to total mass fraction, as found in earlier studies. This mass fraction is smaller than predicted by stellar evolution calculations. For the warm DQ above 10000 K, which are thought to originate from double white dwarf mergers, we obtain extremely low hydrogen and helium masses. The correlation of mass with Teff remains unexplained, but another possible correlation of helium layer masses with Teff as well as the gravitational redshifts casts doubt on the reality of both and suggests possible shortcomings of current models.
We present some of the results of a survey aimed at exploring the asteroseismological potential of the newly-discovered carbon-atmosphere white dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere white dwarfs may drive low
We present a detailed analysis of all the known Hot DQ white dwarfs in the Fourth Data Release of the Sloan Digital Sky Survey (SDSS) recently found to have carbon dominated atmospheres. Our spectroscopic and photometric analysis reveals that these o
White dwarfs (WDs) with carbon absorption features in their optical spectra are known as DQ WDs. The subclass of peculiar DQ WDs are cool objects (T_eff<6000 K) which show molecular absorption bands that have centroid wavelengths ~100-300 Angstroms s
We report the discovery of a new class of hydrogen-deficient stars: white dwarfs with an atmosphere primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars
White dwarf stars constitute the final evolutionary stage for more than 95 per cent of all stars. The Galactic population of white dwarfs conveys a wealth of information about several fundamental issues and are of vital importance to study the struct