ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent progress in understanding the hot and warm gas phases in the halos of star-forming galaxies

110   0   0.0 ( 0 )
 نشر من قبل Dave Strickland
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this contribution we present a few selected examples of how the latest generation of space-based instrumentation -- NASAs Chandra X-ray Observatory and the Far-Ultraviolet Spectroscopic Explorer (FUSE) -- are finally answering old questions about the influence of massive star feedback on the warm and hot phases of the ISM and IGM. In particular, we discuss the physical origin of the soft thermal X-ray emission in the halos of star-forming and starburst galaxies, its relationship to extra-planar H-alpha emission, and plasma diagnostics using FUSE observations of O VI absorption and emission.



قيم البحث

اقرأ أيضاً

Dwarf galaxies provide a special environment due to their low mass, small size and generally low metal content. These attributes make them perfect laboratories for the interaction of massive stars with the interstellar medium on small and especially large spatial scales. The natural result of the spatially concentrated energy output from stellar winds and supernovae of an OB association is an expanding bubble. These bubbles can grow to kpc-size and become the dominant driver of the chemical and dynamical evolution of dwarf galaxies. In such low mass systems, bubbles have an enhanced probability of breaking out of the gaseous disk into the halo of the host galaxy. This may lead to venting metal enriched hot gas to large distances from the sites of creation. In this work I review the current observational material on hot gas inside bubbles, blow-outs, and hot halos of dwarf galaxies and discuss several conclusions which can be drawn from the observations. I will also present an analysis of the dwarf galaxy NGC 1705 as a case study, highlighting observational methods and problems with the current data. Finally I will comment on some areas where large progress should be possible in the near future.
We study the synchrotron radio emission from extra-planar regions of star forming galaxies. We use ideal magneto-hydrodynamical (MHD) simulations of a rotating Milky Way-type disk galaxy with distributed star formation sites for three star formation rates (SFRs) (0.3, 3, 30 M$_{odot}$ yr$^{-1}$). From our simulations, we see emergence of galactic-scale magnetised outflows, carrying gas from the disk. We compare the morphology of the outflowing gas with hydrodynamic (HD) simulations. We look at the spatial distribution of magnetic field in the outflows. Assuming that a certain fraction of gas energy density is converted into cosmic ray energy density, and using information about the magnetic field, we obtain synchrotron emissivity throughout the simulation domain. We generate the surface brightness maps at a frequency of 1.4 GHz. The outflows are more extended in the vertical direction than radial and hence have an oblate shape. We further find that the matter right behind the outer shock, shines brighter in these maps than that above or below. To understand whether this feature can be observed, we produce vertical intensity profiles. We convolve the vertical intensity profile with the typical beam sizes of radio telescopes, for a galaxy located at 10 Mpc (similar to NGC 891) in order to estimate the radio scale height to compare with observations. We find that for our SFRs this feature will lie below the RMS noise limit of instruments. The radio scale height is found to be $sim 300-1200$ pc , depending on the resolution of the telescope. We relate the advection speed of the outer shock with the surface density of star formation as $rm{v}_{rm adv} propto Sigma_{rm SFR}^{0.3}$ which is consistent with earlier observations and analytical estimates.
143 - S. Pellegrini 2011
Recently, the temperature T and luminosity L_X of the hot gas halos of early type galaxies have been derived with unprecedented accuracy from Chandra data, for 30 galaxies covering a wider range of galactic luminosity (and central velocity dispersion sigma_c) than before. This work investigates the origin of the observed temperatures, by examining the relationship between them and the galaxy structure, the gas heating due to Type Ia supernovae (SNIas) and the gravitational potential, and the dynamical status of the gas flow. In galaxies with sigma_c<200 km/s, the Ts are close to a fiducial average temperature for the gas when in outflow; at 200<sigma_c (km/s)<250, the Ts are generally lower than this, and unrelated with sigma_c, which requires a more complex gas flow status; at larger sigma_c, the Ts may increase as sigma_c^2, as expected for infall heating, though heating from SNIas, independent of sigma_c, should be dominant. All observed Ts are larger than the virial temperature, by up to ~0.5 keV. This additional heating can be provided in the X-ray brightest galaxies by SNIas and infall heating, with a SNIas energy input even lower than in standard assumptions; in the X-ray fainter ones it can be provided by SNIas, whose energy input would be required close to the full standard value at the largest sigma_c. This same energy input, though, would produce temperatures larger than observed at low sigma_c, if entirely thermalized. The values of the observed Ts increase from outflows to inflows; the gas is relatively hotter in outflows, though, if the Ts are rescaled by the virial temperature. For 200<sigma_c(km/s)<250, lower L_X values tend to correspond to lower Ts, which deserves further investigation.
We investigate how the empirical properties of hot X-ray-emitting gas in a sample of seven starburst and three normal edge-on spiral galaxies (a sample which covers the full range of star-formation intensity found in disk galaxies) correlate with the size, mass, star formation rate and star formation intensity in the host galaxies. Intriguingly, the diffuse X-ray properties of the normal spirals (both in their disks and halos) fall where extrapolation of the trends from the starburst galaxies with superwinds would predict. We demonstrate that the luminosity of diffuse X-ray emission in both disk and halo is directly proportional to the rate of mechanical energy feedback from massive stars. Nevertheless, with only three non-starburst normal spiral galaxies it is hard to exclude an accretion-based origin for extra-planar diffuse X-ray emission around normal star-forming galaxies. Larger galaxies have more extended X-ray-emitting halos, but galaxy mass appears to play no role in determining the properties of the disk or extra-planar X-ray emitting plasma. The combination of these luminosity and size correlations leads to a correlation between the surface brightness of the diffuse X-ray emission and the mean star formation rate per unit area in the disk (L_FIR/D_25^2). We argue that the crucial spatial region around a galaxy that controls whether gas in starburst-driven superwinds will escape into the IGM is not the outer halo ~100 kpc from the host galaxy, but the inner few halo scale heights, within ~20 kpc of the galaxy plane. Given the properties of the gaseous halos we observe, superwind outflows from disk galaxies of mass M ~ 10^10 -- 10^11 Msun should still eject some fraction of their material into the IGM. (abstract abridged)
Rings in S0s are enigmatic features which can however betray the evolutionary paths of particular galaxies. We have undertaken long-slit spectroscopy of five lenticular galaxies with UV-bright outer rings. The observations have been made with the Sou thern African Large Telescope (SALT) to reveal the kinematics, chemistry, and the ages of the stellar populations and the gas characteristics in the rings and surrounding disks. Four of the five rings are also bright in the H-alpha emission line, and the spectra of the gaseous rings extracted around the maxima of the H-alpha equivalent width reveal excitation by young stars betraying current star formation in the rings. The integrated level of this star formation is 0.1-0.2 solar mass per year, with the outstanding value of 1 solar mass per year in NGC 7808. The difference of chemical composition between the ionized gas of the rings which demonstrate nearly solar metallicity and the underlying stellar disks which are metal-poor implies recent accretion of the gas and star formation ignition; the star formation history estimated by using different star formation indicators implies that the star formation rate decreases with e-folding time of less than 1 Gyr. In NGC 809 where the UV-ring is well visible but the H-alpha emission line excited by massive stars is absent, the star formation has already ceased.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا