ﻻ يوجد ملخص باللغة العربية
Mean motion resonances (MMRs) can lead either to chaotic or regular motion. We report on a numerical experiment showing that even in one of the most chaotic regions of the Solar System - the region of the giant planets, there are numerous bands where MMRs can stabilize orbits of small bodies in a time span comparable to their lifetimes. Two types of temporary stabilization were observed: short period ($sim10^{4}$ years) when a body was in a MMR with only one planet and long period (over $10^{5}$ years) when a body is located in overlapping MMRs with two or three planets. The experiment showed that the Main Belt region can be enriched by cometary material in its pre-active state due to temporary resonant interactions between small bodies and giant planets.
We examine the eccentricity evolution of a system of two planets locked in a mean motion resonance, in which the outer planet loses energy and angular momentum. The sink of energy and angular momentum could be either a gas or planetesimal disk. We sh
Context: We studied numerically the formation of giant planet (GP) and brown dwarf (BD) embryos in gravitationally unstable protostellar disks and compared our findings with directly-imaged, wide-orbit (>= 50 AU) companions known to-date. The viabili
We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on a
The discovery of giant planets in wide orbits represents a major challenge for planet formation theory. In the standard core accretion paradigm planets are expected to form at radial distances $lesssim 20$ au in order to form massive cores (with mass
The results of an extensive numerical study of the periodic orbits of planar, elliptic restricted three-body planetary systems consisting of a star, an inner massive planet and an outer mass-less body in the external 1:2 mean-motion resonance are pre