ﻻ يوجد ملخص باللغة العربية
The eccentric WR+O binary system WR 140 produces dust for a few months at intervals of 7.94 yrs coincident with periastron passage. We present the first resolved images of this dust shell, at binary phases ~0.039 and ~0.055, using aperture masking techniques on the Keck-I telescope to achieve diffraction-limited resolution. Proper motions of approximately 1.1 milliarcsecond per day were detected, implying a distance ~1.5 kpc from the known wind speed. The dust plume observed is not as simple as the ``pinwheel nebulae seen around other WR colliding wind binaries, indicating the orbital plane is highly inclined to our line-of-sight and/or the dust formation is very clumpy. Follow-up imaging in the mid-infrared and with adaptive optics is urgently required to track the dust motion further, necessary for unambiguously determining the orbital geometry which we only partially constrain here. With full knowledge of the orbital elements, these infrared images can be used to reconstruct the dust distribution along the colliding wind interface, providing a unique tool for probing the post-shock physical conditions of violent astrophysical flows.
Wolf-Rayet stars represent one of the final stages of massive stellar evolution. Relatively little is known about this short-lived phase and we currently lack reliable mass, distance, and binarity determinations for a representative sample. Here we r
We present updated orbital elements for the Wolf-Rayet (WR) binary WR,140 (HD,193793; WC7pd + O5.5fc). The new orbital elements were derived using previously published measurements along with {color{black}160} new radial velocity measurements across
We present results from a global view on the colliding-wind binary WR 147. We analysed new optical spectra of WR 147 obtained with Gran Telescopio CANARIAS and archive spectra from the Hubble Space Telescope by making use of modern atmosphere models
Observations of the WC9+OB system WR 65 in the infrared show variations of its dust emission consistent with a period near 4.8~yr, suggesting formation in a colliding-wind binary (CWB) having an elliptical orbit. If we adopt the IR maximum as zero ph
WR 125 is considered as a Colliding Wind Wolf-rayet Binary (CWWB), from which the most recent infrared flux increase was reported between 1990 and 1993. We observed the object four times from November 2016 to May 2017 with Swift and XMM-Newton, and c