ترغب بنشر مسار تعليمي؟ اضغط هنا

The colliding-wind WC9+OB system WR 65 and dust formation by WR stars

98   0   0.0 ( 0 )
 نشر من قبل Peredur Williams
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of the WC9+OB system WR 65 in the infrared show variations of its dust emission consistent with a period near 4.8~yr, suggesting formation in a colliding-wind binary (CWB) having an elliptical orbit. If we adopt the IR maximum as zero phase, the times of X-ray maximum count and minimum extinction to the hard component measured by Oskinova & Hamann fall at phases 0.4--0.5, when the separation of the WC9 and OB stars is greatest. We consider WR 65 in the context of other WC8-9+OB stars showing dust emission.



قيم البحث

اقرأ أيضاً

We present results from a global view on the colliding-wind binary WR 147. We analysed new optical spectra of WR 147 obtained with Gran Telescopio CANARIAS and archive spectra from the Hubble Space Telescope by making use of modern atmosphere models accounting for optically thin clumping. We adopted a grid-modelling approach to derive some basic physical characteristics of both stellar components in WR 147. For the currently accepted distance of 630 pc to WR 147, the values of mass-loss rate derived from modelling its optical spectra are in acceptable correspondence with that from modelling its X-ray emission. However, they give a lower radio flux than observed. A plausible solution for this problem could be if the volume filling factor at large distances from the star (radio-formation region) is smaller than close to the star (optical-formation region). Adopting this, the model can match well both optical and thermal radio emission from WR 147. The global view on the colliding-wind binary WR 147 thus shows that its observational properties in different spectral domains can be explained in a self-consistent physical picture.
Wolf-Rayet stars represent one of the final stages of massive stellar evolution. Relatively little is known about this short-lived phase and we currently lack reliable mass, distance, and binarity determinations for a representative sample. Here we r eport the first visual orbit for WR 140(=HD193793), a WC7+O5 binary system known for its periodic dust production episodes triggered by intense colliding winds near periastron passage. The IOTA and CHARA interferometers resolved the pair of stars in each year from 2003--2009, covering most of the highly-eccentric, 7.9 year orbit. Combining our results with the recent improved double-line spectroscopic orbit of Fahed et al. (2011), we find the WR 140 system is located at a distance of 1.67 +/- 0.03 kpc, composed of a WR star with M_WR = 14.9 +/- 0.5 Msun and an O star with M_O = 35.9 +/- 1.3 Msun. Our precision orbit yields key parameters with uncertainties times 6 smaller than previous work and paves the way for detailed modeling of the system. Our newly measured flux ratios at the near-infrared H and Ks bands allow an SED decomposition and analysis of the component evolutionary states.
120 - Joshua D. Thomas 2021
We present updated orbital elements for the Wolf-Rayet (WR) binary WR,140 (HD,193793; WC7pd + O5.5fc). The new orbital elements were derived using previously published measurements along with {color{black}160} new radial velocity measurements across the 2016 periastron passage of WR 140. Additionally, four new measurements of the orbital astrometry were collected with the CHARA Array. With these measurements, we derive stellar masses of $M_{rm WR} = 10.31pm0.45 M_odot$ and $M_{rm O} = 29.27pm1.14 M_{odot}$. We also include a discussion of the evolutionary history of this system from the Binary Population and Spectral Synthesis (BPASS) model grid to show that this WR star likely formed primarily through mass loss in the stellar winds, with only a moderate amount of mass lost or transferred through binary interactions.
The eccentric WR+O binary system WR 140 produces dust for a few months at intervals of 7.94 yrs coincident with periastron passage. We present the first resolved images of this dust shell, at binary phases ~0.039 and ~0.055, using aperture masking te chniques on the Keck-I telescope to achieve diffraction-limited resolution. Proper motions of approximately 1.1 milliarcsecond per day were detected, implying a distance ~1.5 kpc from the known wind speed. The dust plume observed is not as simple as the ``pinwheel nebulae seen around other WR colliding wind binaries, indicating the orbital plane is highly inclined to our line-of-sight and/or the dust formation is very clumpy. Follow-up imaging in the mid-infrared and with adaptive optics is urgently required to track the dust motion further, necessary for unambiguously determining the orbital geometry which we only partially constrain here. With full knowledge of the orbital elements, these infrared images can be used to reconstruct the dust distribution along the colliding wind interface, providing a unique tool for probing the post-shock physical conditions of violent astrophysical flows.
We present infrared photometry of the WC8 Wolf-Rayet system WR 48a observed with telescopes at ESO, the SAAO and the AAT between 1982 and 2011 which show a slow decline in dust emission from the previously reported outburst in 1978--79 until about 19 97, when significant dust emission was still evident. This was followed by a slow rise, accelerating to reach and overtake the first (1978) photometry, demonstrating that the outburst observed in 1978--79 was not an isolated event, but that they recur at intervals of 32+ years. This suggests that WR 48a is a long-period dust maker and colliding-wind binary (CWB). The locus of WR 48a in the (H-L), K colour-magnitude diagram implies that the rate of dust formation fell between 1979 and about 1997 and then increased steadily until 2011. Superimposed on the long-term variation are secondary (`mini) eruptions in (at least) 1990, 1994, 1997, 1999 and 2004, characteristic of relatively brief episodes of additional dust formation. Spectra show evidence for an Oe or Be companion to the WC8 star, supporting the suggestion that WR 48a is a binary system and indicating a system luminosity consistent with the association of WR 48a and the young star clusters Danks 1 and Danks 2. The range of dust formation suggests that these stars are in an elliptical orbit having e ~ 0.6. The size of the orbit implied by the minimum period, together with the WC wind velocity and likely mass-loss rate, implies that the post-shock WC wind is adiabatic throughout the orbit -- at odds with the observed dust formation. A similar conflict is observed in the `pinwheel dust-maker WR 112.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا