ﻻ يوجد ملخص باللغة العربية
The time evolution of galaxy cluster abundance is used to constrain cosmological parameters in dark matter models containing a fraction of hot particles (massive neutrino). We test the modified MDM models with cosmic gravitational waves which are in agreement with observational data at $z=0$, and show that they do not pass the cluster evolution test and therefore should be ruled out. The models with a non-zero cosmological constant are in better agreement with the evolution test. We estimate $Omega_Lambda$ and find that it is strongly affected by a small fraction of hot dark matter: $0.4 <Omega_Lambda <0.8$ for $Omega_H /Omega_M <0.2$.
The evolution of galaxy clusters can be affected by the repulsion described by the cosmological constant. This conclusion is reached within the modified weak-field General Relativity approach where the cosmological constant Lambda enables to describe
We study the clustering properties of galaxy clusters expected to be observed by various forthcoming surveys both in the X-ray and sub-mm regimes by the thermal Sunyaev-Zeldovich effect. Several different background cosmological models are assumed, i
Cold dark matter (CDM) could be composed of primordial black holes (PBH) in addition to or instead of more orthodox weakly interacting massive particle dark matter (PDM). We study the formation of the first structures in such $Lambda$PBH cosmologies
The age of the Universe in the $Lambda$CDM cosmology with $Omega_{matter}=0.26$ and $Omega_{Lambda}=0.74$ is the same as in the Milne cosmology which correspods to an almost empty universe. In both cases it is a reciprocal Hubble constant, $1/H_0$, t
We present a method that extends the capabilities of the PINpointing Orbit-Crossing Collapsed HIerarchical Objects (PINOCCHIO) code, allowing it to generate accurate dark matter halo mock catalogues in cosmological models where the linear growth fact