ترغب بنشر مسار تعليمي؟ اضغط هنا

Coincidence of Universe age in $Lambda$CDM and Milne cosmologies

85   0   0.0 ( 0 )
 نشر من قبل Michal Dyrda
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The age of the Universe in the $Lambda$CDM cosmology with $Omega_{matter}=0.26$ and $Omega_{Lambda}=0.74$ is the same as in the Milne cosmology which correspods to an almost empty universe. In both cases it is a reciprocal Hubble constant, $1/H_0$, that for now preferred value $H_0=71 km/s/Mpc$ is 13.7 billion years. The most curious coincidence is that at the present time, in the $Lambda$CDM model the decelerated expansion is exactly compensated by the accelerated expansion, as if the Universe coast for 13.7 billion years.



قيم البحث

اقرأ أيضاً

We present a method that extends the capabilities of the PINpointing Orbit-Crossing Collapsed HIerarchical Objects (PINOCCHIO) code, allowing it to generate accurate dark matter halo mock catalogues in cosmological models where the linear growth fact or and the growth rate depend on scale. Such cosmologies comprise, among others, models with massive neutrinos and some classes of modified gravity theories. We validate the code by comparing the halo properties from PINOCCHIO against N-body simulations, focusing on cosmologies with massive neutrinos: $ uLambda$CDM. We analyse the halo mass function, halo two-point correlation function, halo power spectrum and the moments of the halo density field, showing that PINOCCHIO reproduces the results from simulations with the same level of precision as the original code ($sim5-10%$). We demonstrate that the abundance of halos in cosmologies with massless and massive neutrinos from PINOCCHIO matches very well the outcome of simulations, and point out that PINOCCHIO can reproduce the $Omega_ u-sigma_8$ degeneracy that affects the halo mass function. We show that the clustering properties of the halos from PINOCCHIO matches accurately those from simulations both in real and redshift-space, in the latter case up to $k=0.3~h~{rm Mpc}^{-1}$. We finally point out that the first moments of the halo density field from simulations are precisely reproduced by PINOCCHIO. We emphasize that the computational time required by PINOCCHIO to generate mock halo catalogues is orders of magnitude lower than the one needed for N-body simulations. This makes this tool ideal for applications like covariance matrix studies within the standard $Lambda$CDM model but also in cosmologies with massive neutrinos or some modified gravity theories.
87 - C.Y. Yaryura 2020
Associations of dwarf galaxies are loose systems composed exclusively of dwarf galaxies. These systems were identified in the Local Volume for the first time more than thirty years ago. We study these systems in the cosmological framework of the $Lam bda$ Cold Dark Matter ($Lambda$CDM) model. We consider the Small MultiDark Planck simulation and populate its dark matter haloes by applying the semi-analytic model of galaxy formation SAG. We identify galaxy systems using a friends of friends algorithm with a linking length equal to $b=0.4 ,{rm Mpc},h^{-1}$, to reproduce the size of dwarf galaxy associations detected in the Local Volume. Our samples of dwarf systems are built up removing those systems that have one (or more) galaxies with stellar mass larger than a maximum threshold $M_{rm max}$. We analyse three different samples defined by ${rm log}_{10}(M_{rm max}[{rm M}_{odot},h^{-1}]) = 8.5, 9.0$ and $9.5$. On average, our systems have typical sizes of $sim 0.2,{rm Mpc},h^{-1}$, velocity dispersion of $sim 30 {rm km,s^{-1}} $ and estimated total mass of $sim 10^{11} {rm M}_{odot},h^{-1}$. Such large typical sizes suggest that individual members of a given dwarf association reside in different dark matter haloes and are generally not substructures of any other halo. Indeed, in more than 90 per cent of our dwarf systems their individual members inhabit different dark matter haloes, while only in the remaining 10 per cent members do reside in the same halo. Our results indicate that the $Lambda$CDM model can naturally reproduce the existence and properties of dwarf galaxies associations without much difficulty.
We determine the relationship between the turnaround radius, $R_{rm t}$, and mass, $M_{rm t}$, in $Lambda$CDM, and in dark energy scenarios, using an extended spherical collapse model taking into account the effects of shear and vorticity. We find a more general formula than that usually described in literature, showing a dependence of $R_{rm t}$ from shear, and vorticity. The $R_{rm t}-M_{rm t}$ relation differs from that obtained not taking into account shear, and rotation, especially at galactic scales, differing $simeq 30%$ from the result given in literature. This has effects on the constraint of the $w$ parameter of the equation of state. We compare the $R_{rm t}-M_{rm t}$ relationship obtained for the $Lambda$CDM, and different dark energy models to that obtained in the $f(R)$ modified gravity (MG) scenario. The $R_{rm t}-M_{rm t}$ relationship in $Lambda$CDM, and dark energy scenarios are tantamount to the prediction of the $f(R)$ theories. Then, the $R_{rm t}-M_{rm t}$ relationship is not a good probe to test gravity theories beyond Einsteins general relativity.
We study the formation of galaxies in a Lambda-CDM Universe using high resolution hydrodynamical simulations with a multiphase treatment of gas, cooling and feedback, focusing on the formation of discs. Our simulations follow eight haloes similar in mass to the Milky Way and extracted from a large cosmological simulation without restriction on spin parameter or merger history. This allows us to investigate how the final properties of the simulated galaxies correlate with the formation histories of their haloes. We find that, at z = 0, none of our galaxies contain a disc with more than 20 per cent of its total stellar mass. Four of the eight galaxies nevertheless have well-formed disc components, three have dominant spheroids and very small discs, and one is a spheroidal galaxy with no disc at all. The z = 0 spheroids are made of old stars, while discs are younger and formed from the inside-out. Neither the existence of a disc at z = 0 nor the final disc-to-total mass ratio seems to depend on the spin parameter of the halo. Discs are formed in haloes with spin parameters as low as 0.01 and as high as 0.05; galaxies with little or no disc component span the same range in spin parameter. Except for one of the simulated galaxies, all have significant discs at z > ~2, regardless of their z = 0 morphologies. Major mergers and instabilities which arise when accreting cold gas is misaligned with the stellar disc trigger a transfer of mass from the discs to the spheroids. In some cases, discs are destroyed, while in others, they survive or reform. This suggests that the survival probability of discs depends on the particular formation history of each galaxy. A realistic Lambda-CDM model will clearly require weaker star formation at high redshift and later disc assembly than occurs in our models.
Understanding the formation and evolution of early-type, spheroid-dominated galaxies is an open question within the context of the hierarchical clustering scenario, particularly, in low-density environments. Our goal is to study the main structural, dynamical, and stellar population properties and assembly histories of field spheroid-dominated galaxies formed in a LCDM scenario to assess to what extend they are consistent with observations. We selected spheroid-dominated systems from a LCDM simulation that includes star formation, chemical evolution and Supernova feedback. A sample of 18 field systems with Mstar <= 6x10^10 Msun that are dominated by the spheroid component. For this sample we estimate the fundamental relations of ellipticals and then compared with current observations. The simulated spheroid galaxies have sizes in good agreement with observations. The bulges follow a Sersic law with Sersic indexes that correlate with the bulge-to-total mass ratios. The structural-dynamical properties of the simulated galaxies are consistent with observed Faber-Jackson, Fundamental Plane, and Tully-Fisher relations. However, the simulated galaxies are bluer and with higher star formation rates than observed isolated early-type galaxies. The archaeological mass growth histories show a slightly delayed formation and more prominent inside-out growth mode than observational inferences based on the fossil record method. The main structural and dynamical properties of the simulated spheroid-dominated galaxies are consistent with observations. This is remarkable since none of them has been tuned to be reproduced. However, the simulated galaxies are blue and star-forming, and with later stellar mass growth histories as compared to observational inferences. This is mainly due to the persistence of extended discs in the simulations. Abridged
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا