ﻻ يوجد ملخص باللغة العربية
The effect of magnetic shear and shear flow on local gravitationally induced instabilities is investigated. A simple model is constructed allowing for an arbitrary entropy gradient and a shear plasma flow in the Boussinesq approximation. A transformation to shearing magnetic coordinates achieves a model with plasma flow along the magnetic field lines where the coordinate lines are coincident with the field lines. The solution for the normal modes of the system depends on two parameters: the Alfven Mach number of the plasma flow and the entropy gradient. The behavior of the unstable normal modes of this system is summarized by a stability diagram. Important characteristics of this stability diagram are the following: magnetic shear is stabilizing and the entropy gradient must exceed a threshold value for unstable mode growth to occur; flow acts to suppress mode growth in a substantially unstable regime as expected, yet near marginal stability it can lessen the stabilizing effect of magnetic shear and enhance the growth rates of the instability; and, as the Alfven Mach number approaches one, the instability is completely stabilized. Analytical work is presented supporting the characteristics of the stability diagram and illuminating the physical mechanisms controlling the behavior of the model. The implications of this work for astrophysical and fusion applications and the potential for future research extending the results to include compressibility are discussed.
We consider barotropic instability of shear flows for incompressible fluids with Coriolis effects. For a class of shear flows, we develop a new method to find the sharp stability conditions. We study the flow with Sinus profile in details and obtain
Origin of hydrodynamic turbulence in rotating shear flows is investigated. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows are Rayleigh stable
The vertical shear instability (VSI) is a robust phenomenon in irradiated protoplanetary disks (PPDs). While there is extensive literature on the VSI in the hydrodynamic limit, PPDs are expected to be magnetized and their extremely low ionization fra
We present a linear stability analysis of the perturbation modes in anisotropic MHD flows with velocity shear and strong magnetic field. Collisionless or weakly collisional plasma is described within the 16-momentum MHD fluid closure model, that take
In this paper, we revisit the governing equations for linear magnetohydrodynamic (MHD) waves and instabilities existing within a magnetized, plane-parallel, self-gravitating slab. Our approach allows for fully non-uniformly magnetized slabs, which de