ﻻ يوجد ملخص باللغة العربية
We present a first attempt to construct an analytic model for a clumped gas and dust disk and apply it to the Galactic Centre. The clumps are described as isothermal spheres partially ionized by the external UV radiation field. The disk structure formed by the clouds is described as a quasi standard continuous accretion disk using adequately averaged parameters of the discrete cloud model. The viscosity in the Circumnuclear Disk is due to partially inelastic cloud-cloud collisions. We find two different solutions for the set of equations corresponding to two stable cloud regimes: (i) the observed molecular clouds and (ii) much lighter and smaller clouds which correspond to the stripped cores of the observed clouds. It is shown that the resulting physical characteristics of the heavy clouds and the disk are in very good agreement with all comparable observations at multiple wavelengths. A mass accretion rate of approx. 10^-4 M_solar/yr for the isolated Circumnuclear Disk is inferred. We propose that the Circumnuclear Disk has a much longer lifetime (approx. 10^7 yr) than previously assumed.
Within a few parsecs around the central Black Hole Sgr A*, chemistry in the dense molecular cloud material of the circumnuclear disk (CND) can be affected by many energetic phenomena such as high UV-flux from the massive central star cluster, X-rays
The circumnuclear disk (CND) of the Galactic Center is exposed to many energetic phenomena coming from the supermassive black hole Sgr A* and stellar activities. These energetic activities can affect the chemical composition in the CND by the interac
A number of extragalactic radio sources which exhibit symmetric jets on parsec scales have now been found to have neutral hydrogen absorption at or near the systemic velocities of their host galaxies. Understanding the spatial distribution and kinema
We compare three different models of clumpy gas disk and show that the Circumnuclear Disk (CND) in the Galactic Center and a putative, geometrically thick, obscuring torus are best explained by a collisional model consisting of quasi-stable, self-gra
The Galactic centre - as the closest galactic nucleus - holds both intrinsic interest and possibly represents a useful analogue to star-burst nuclei which we can observe with orders of magnitude finer detail than these external systems. The environme