ﻻ يوجد ملخص باللغة العربية
We compare three different models of clumpy gas disk and show that the Circumnuclear Disk (CND) in the Galactic Center and a putative, geometrically thick, obscuring torus are best explained by a collisional model consisting of quasi-stable, self-gravitating clouds. Kinetic energy of clouds is gained by mass inflow and dissipated in cloud collisions. The collisions give rise to a viscosity in a spatially averaged gas dynamical picture, which connects them to angular momentum transport and mass inflow. It is found that CND and torus share the same gas physics in our description, where the mass of clouds is 20 - 50 M_sun and their density is close to the limit of disruption by tidal shear. We show that the difference between a transparent CND and an obscuring torus is the gas mass and the velocity dispersion of the clouds. A change in gas supply and the dissipation of kinetic energy can turn a torus into a CND-like structure and vice versa. Any massive torus will naturally lead to sufficiently high mass accretion rates to feed a luminous AGN. For a geometrically thick torus to obscure the view to the center even super-Eddington accretions rates with respect to the central black hole are required.
Within a few parsecs around the central Black Hole Sgr A*, chemistry in the dense molecular cloud material of the circumnuclear disk (CND) can be affected by many energetic phenomena such as high UV-flux from the massive central star cluster, X-rays
The circumnuclear disk (CND) of the Galactic Center is exposed to many energetic phenomena coming from the supermassive black hole Sgr A* and stellar activities. These energetic activities can affect the chemical composition in the CND by the interac
We analyzed the spectral shape of the Compton shoulder around the neutral Fe-K$_alpha$ line of the Compton-thick type II Seyfert nucleus of the Circinus galaxy. The characteristics of this Compton shoulder with respect to the reflected continuum and
We present CS(7-6) line maps toward the central parsec of the Galactic Center (GC), conducted with the Atacama Large Millimeter/submillimeter Array (ALMA). The primary goal is to find and characterize the gas structure in the inner cavity of the circ
Utilizing the Atacama Large Millimeter/submillimeter Array (ALMA), we present CS line maps in five rotational lines ($J_{rm u}=7, 5, 4, 3, 2$) toward the circumnuclear disk (CND) and streamers of the Galactic Center. Our primary goal is to resolve th